Run all threads when extending a next range over a call.

If you don't do this you end up running arbitrary code with
only one thread allowed to run, which can cause deadlocks.

<rdar://problem/56422478>

Differential Revision: https://reviews.llvm.org/D71440
This commit is contained in:
Jim Ingham 2019-12-16 17:38:13 -08:00
parent 53bcd1e141
commit 434905b97d
12 changed files with 232 additions and 94 deletions

View File

@ -287,6 +287,10 @@ public:
/// a function call (a branch that calls and returns to the next
/// instruction). If false, find the instruction index of any
/// branch in the list.
///
/// @param[out] found_calls
/// If non-null, this will be set to true if any calls were found in
/// extending the range.
///
/// @return
/// The instruction index of the first branch that is at or past
@ -295,7 +299,8 @@ public:
//------------------------------------------------------------------
uint32_t GetIndexOfNextBranchInstruction(uint32_t start,
Target &target,
bool ignore_calls) const;
bool ignore_calls,
bool *found_calls) const;
uint32_t GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr,
Target &target);

View File

@ -76,6 +76,12 @@ protected:
lldb::BreakpointSP m_next_branch_bp_sp;
bool m_use_fast_step;
bool m_given_ranges_only;
bool m_found_calls = false; // When we set the next branch breakpoint for
// step over, we now extend them past call insns
// that directly return. But if we do that we
// need to run all threads, or we might cause
// deadlocks. This tells us whether we found
// any calls in setting the next branch breakpoint.
private:
std::vector<lldb::DisassemblerSP> m_instruction_ranges;

View File

@ -1,4 +1,4 @@
C_SOURCES := locking.c
CXX_SOURCES := locking.cpp
ENABLE_THREADS := YES
include Makefile.rules

View File

@ -16,9 +16,6 @@ class ExprDoesntDeadlockTestCase(TestBase):
mydir = TestBase.compute_mydir(__file__)
@expectedFailureAll(oslist=['freebsd'], bugnumber='llvm.org/pr17946')
@expectedFailureAll(
oslist=["windows"],
bugnumber="Windows doesn't have pthreads, test needs to be ported")
@add_test_categories(["basic_process"])
def test_with_run_command(self):
"""Test that expr will time out and allow other threads to run if it blocks."""
@ -32,7 +29,7 @@ class ExprDoesntDeadlockTestCase(TestBase):
# Now create a breakpoint at source line before call_me_to_get_lock
# gets called.
main_file_spec = lldb.SBFileSpec("locking.c")
main_file_spec = lldb.SBFileSpec("locking.cpp")
breakpoint = target.BreakpointCreateBySourceRegex(
'Break here', main_file_spec)
if self.TraceOn():
@ -55,6 +52,6 @@ class ExprDoesntDeadlockTestCase(TestBase):
frame0 = thread.GetFrameAtIndex(0)
var = frame0.EvaluateExpression("call_me_to_get_lock()")
var = frame0.EvaluateExpression("call_me_to_get_lock(get_int())")
self.assertTrue(var.IsValid())
self.assertTrue(var.GetValueAsSigned(0) == 567)
self.assertEqual(var.GetValueAsSigned(0), 567)

View File

@ -1,80 +0,0 @@
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
pthread_mutex_t contended_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t control_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t control_condition;
pthread_mutex_t thread_started_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t thread_started_condition;
// This function runs in a thread. The locking dance is to make sure that
// by the time the main thread reaches the pthread_join below, this thread
// has for sure acquired the contended_mutex. So then the call_me_to_get_lock
// function will block trying to get the mutex, and only succeed once it
// signals this thread, then lets it run to wake up from the cond_wait and
// release the mutex.
void *
lock_acquirer_1 (void *input)
{
pthread_mutex_lock (&contended_mutex);
// Grab this mutex, that will ensure that the main thread
// is in its cond_wait for it (since that's when it drops the mutex.
pthread_mutex_lock (&thread_started_mutex);
pthread_mutex_unlock(&thread_started_mutex);
// Now signal the main thread that it can continue, we have the contended lock
// so the call to call_me_to_get_lock won't make any progress till this
// thread gets a chance to run.
pthread_mutex_lock (&control_mutex);
pthread_cond_signal (&thread_started_condition);
pthread_cond_wait (&control_condition, &control_mutex);
pthread_mutex_unlock (&contended_mutex);
return NULL;
}
int
call_me_to_get_lock ()
{
pthread_cond_signal (&control_condition);
pthread_mutex_lock (&contended_mutex);
return 567;
}
int main ()
{
pthread_t thread_1;
pthread_cond_init (&control_condition, NULL);
pthread_cond_init (&thread_started_condition, NULL);
pthread_mutex_lock (&thread_started_mutex);
pthread_create (&thread_1, NULL, lock_acquirer_1, NULL);
pthread_cond_wait (&thread_started_condition, &thread_started_mutex);
pthread_mutex_lock (&control_mutex);
pthread_mutex_unlock (&control_mutex);
// Break here. At this point the other thread will have the contended_mutex,
// and be sitting in its cond_wait for the control condition. So there is
// no way that our by-hand calling of call_me_to_get_lock will proceed
// without running the first thread at least somewhat.
call_me_to_get_lock();
pthread_join (thread_1, NULL);
return 0;
}

View File

@ -0,0 +1,76 @@
#include <stdio.h>
#include <thread>
std::mutex contended_mutex;
std::mutex control_mutex;
std::condition_variable control_condition;
std::mutex thread_started_mutex;
std::condition_variable thread_started_condition;
// This function runs in a thread. The locking dance is to make sure that
// by the time the main thread reaches the pthread_join below, this thread
// has for sure acquired the contended_mutex. So then the call_me_to_get_lock
// function will block trying to get the mutex, and only succeed once it
// signals this thread, then lets it run to wake up from the cond_wait and
// release the mutex.
void
lock_acquirer_1 (void)
{
std::unique_lock<std::mutex> contended_lock(contended_mutex);
// Grab this mutex, that will ensure that the main thread
// is in its cond_wait for it (since that's when it drops the mutex.
thread_started_mutex.lock();
thread_started_mutex.unlock();
// Now signal the main thread that it can continue, we have the contended lock
// so the call to call_me_to_get_lock won't make any progress till this
// thread gets a chance to run.
std::unique_lock<std::mutex> control_lock(control_mutex);
thread_started_condition.notify_all();
control_condition.wait(control_lock);
}
int
call_me_to_get_lock (int ret_val)
{
control_condition.notify_all();
contended_mutex.lock();
return ret_val;
}
int
get_int() {
return 567;
}
int main ()
{
std::unique_lock<std::mutex> thread_started_lock(thread_started_mutex);
std::thread thread_1(lock_acquirer_1);
thread_started_condition.wait(thread_started_lock);
control_mutex.lock();
control_mutex.unlock();
// Break here. At this point the other thread will have the contended_mutex,
// and be sitting in its cond_wait for the control condition. So there is
// no way that our by-hand calling of call_me_to_get_lock will proceed
// without running the first thread at least somewhat.
int result = call_me_to_get_lock(get_int());
thread_1.join();
return 0;
}

View File

@ -0,0 +1,4 @@
CXX_SOURCES := locking.cpp
ENABLE_THREADS := YES
include Makefile.rules

View File

@ -0,0 +1,30 @@
"""
Test that step over will let other threads run when necessary
"""
from __future__ import print_function
import lldb
from lldbsuite.test.decorators import *
from lldbsuite.test.lldbtest import *
from lldbsuite.test import lldbutil
class StepOverDoesntDeadlockTestCase(TestBase):
mydir = TestBase.compute_mydir(__file__)
def test_step_over(self):
"""Test that when step over steps over a function it lets other threads run."""
self.build()
(target, process, thread, bkpt) = lldbutil.run_to_source_breakpoint(self,
"without running the first thread at least somewhat",
lldb.SBFileSpec("locking.cpp"))
# This is just testing that the step over actually completes.
# If the test fails this step never return, so failure is really
# signaled by the test timing out.
thread.StepOver()
state = process.GetState()
self.assertEqual(state, lldb.eStateStopped)

View File

@ -0,0 +1,76 @@
#include <stdio.h>
#include <thread>
std::mutex contended_mutex;
std::mutex control_mutex;
std::condition_variable control_condition;
std::mutex thread_started_mutex;
std::condition_variable thread_started_condition;
// This function runs in a thread. The locking dance is to make sure that
// by the time the main thread reaches the pthread_join below, this thread
// has for sure acquired the contended_mutex. So then the call_me_to_get_lock
// function will block trying to get the mutex, and only succeed once it
// signals this thread, then lets it run to wake up from the cond_wait and
// release the mutex.
void
lock_acquirer_1 (void)
{
std::unique_lock<std::mutex> contended_lock(contended_mutex);
// Grab this mutex, that will ensure that the main thread
// is in its cond_wait for it (since that's when it drops the mutex.
thread_started_mutex.lock();
thread_started_mutex.unlock();
// Now signal the main thread that it can continue, we have the contended lock
// so the call to call_me_to_get_lock won't make any progress till this
// thread gets a chance to run.
std::unique_lock<std::mutex> control_lock(control_mutex);
thread_started_condition.notify_all();
control_condition.wait(control_lock);
}
int
call_me_to_get_lock (int ret_val)
{
control_condition.notify_all();
contended_mutex.lock();
return ret_val;
}
int
get_int() {
return 567;
}
int main ()
{
std::unique_lock<std::mutex> thread_started_lock(thread_started_mutex);
std::thread thread_1(lock_acquirer_1);
thread_started_condition.wait(thread_started_lock);
control_mutex.lock();
control_mutex.unlock();
// Break here. At this point the other thread will have the contended_mutex,
// and be sitting in its cond_wait for the control condition. So there is
// no way that our by-hand calling of call_me_to_get_lock will proceed
// without running the first thread at least somewhat.
int result = call_me_to_get_lock(get_int());
thread_1.join();
return 0;
}

View File

@ -1101,15 +1101,22 @@ void InstructionList::Append(lldb::InstructionSP &inst_sp) {
uint32_t
InstructionList::GetIndexOfNextBranchInstruction(uint32_t start,
Target &target,
bool ignore_calls) const {
bool ignore_calls,
bool *found_calls) const {
size_t num_instructions = m_instructions.size();
uint32_t next_branch = UINT32_MAX;
size_t i;
if (found_calls)
*found_calls = false;
for (i = start; i < num_instructions; i++) {
if (m_instructions[i]->DoesBranch()) {
if (ignore_calls && m_instructions[i]->IsCall())
if (ignore_calls && m_instructions[i]->IsCall()) {
if (found_calls)
*found_calls = true;
continue;
}
next_branch = i;
break;
}

View File

@ -5800,7 +5800,8 @@ Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
uint32_t branch_index =
insn_list->GetIndexOfNextBranchInstruction(insn_offset, target,
false /* ignore_calls*/);
false /* ignore_calls*/,
nullptr);
if (branch_index == UINT32_MAX) {
return retval;
}

View File

@ -238,8 +238,18 @@ lldb::FrameComparison ThreadPlanStepRange::CompareCurrentFrameToStartFrame() {
}
bool ThreadPlanStepRange::StopOthers() {
return (m_stop_others == lldb::eOnlyThisThread ||
m_stop_others == lldb::eOnlyDuringStepping);
switch (m_stop_others) {
case lldb::eOnlyThisThread:
return true;
case lldb::eOnlyDuringStepping:
// If there is a call in the range of the next branch breakpoint,
// then we should always run all threads, since a call can execute
// arbitrary code which might for instance take a lock that's held
// by another thread.
return !m_found_calls;
case lldb::eAllThreads:
return false;
}
}
InstructionList *ThreadPlanStepRange::GetInstructionsForAddress(
@ -292,6 +302,7 @@ void ThreadPlanStepRange::ClearNextBranchBreakpoint() {
GetTarget().RemoveBreakpointByID(m_next_branch_bp_sp->GetID());
m_next_branch_bp_sp.reset();
m_could_not_resolve_hw_bp = false;
m_found_calls = false;
}
}
@ -305,6 +316,9 @@ bool ThreadPlanStepRange::SetNextBranchBreakpoint() {
if (!m_use_fast_step)
return false;
// clear the m_found_calls, we'll rediscover it for this range.
m_found_calls = false;
lldb::addr_t cur_addr = GetThread().GetRegisterContext()->GetPC();
// Find the current address in our address ranges, and fetch the disassembly
// if we haven't already:
@ -317,9 +331,11 @@ bool ThreadPlanStepRange::SetNextBranchBreakpoint() {
else {
Target &target = GetThread().GetProcess()->GetTarget();
const bool ignore_calls = GetKind() == eKindStepOverRange;
bool found_calls;
uint32_t branch_index =
instructions->GetIndexOfNextBranchInstruction(pc_index, target,
ignore_calls);
ignore_calls,
&m_found_calls);
Address run_to_address;