[mlir][Linalg] NFC: Verify tiling on linalg.generic operation on tensors.

With the recent changes to linalg on tensor semantics, the tiling
operations works out-of-the-box for generic operations. Add a test to
verify that and some minor refactoring.

Differential Revision: https://reviews.llvm.org/D93077
This commit is contained in:
MaheshRavishankar 2021-01-14 15:41:12 -08:00
parent 774c9c6ef3
commit 42444d0cf0
3 changed files with 116 additions and 9 deletions

View File

@ -327,6 +327,21 @@ AffineMap inversePermutation(AffineMap map);
/// ``` /// ```
AffineMap concatAffineMaps(ArrayRef<AffineMap> maps); AffineMap concatAffineMaps(ArrayRef<AffineMap> maps);
/// Returns the map that results from projecting out the dimensions specified in
/// `projectedDimensions`. The projected dimensions are set to 0.
///
/// Example:
/// 1) map : affine_map<(d0, d1, d2) -> (d0, d1)>
/// projected_dimensions : {2}
/// result : affine_map<(d0, d1) -> (d0, d1)>
///
/// 2) map : affine_map<(d0, d1) -> (d0 + d1)>
/// projected_dimensions : {1}
/// result : affine_map<(d0) -> (d0)>
///
/// 3) map : affine_map<(d0, d1, d2) -> (d0, d1)>
/// projected_dimensions : {1}
/// result : affine_map<(d0, d1) -> (d0, 0)>
AffineMap getProjectedMap(AffineMap map, AffineMap getProjectedMap(AffineMap map,
ArrayRef<unsigned> projectedDimensions); ArrayRef<unsigned> projectedDimensions);

View File

@ -221,9 +221,8 @@ static bool isTiled(AffineMap map, ValueRange tileSizes) {
static SmallVector<Value, 4> static SmallVector<Value, 4>
makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp, makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
ValueRange operands, AffineMap map, ValueRange ivs, ArrayRef<Value> tiledOperands, AffineMap map, ValueRange ivs,
ValueRange tileSizes, ValueRange allShapeSizes) { ValueRange tileSizes, ValueRange allShapeSizes) {
assert(operands.size() == linalgOp.getShapedOperands().size());
assert(ivs.size() == static_cast<size_t>(llvm::count_if( assert(ivs.size() == static_cast<size_t>(llvm::count_if(
llvm::make_range(tileSizes.begin(), tileSizes.end()), llvm::make_range(tileSizes.begin(), tileSizes.end()),
[](Value v) { return !isZero(v); })) && [](Value v) { return !isZero(v); })) &&
@ -243,11 +242,9 @@ makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
subShapeSizes.push_back(size - std_constant_index(1)); subShapeSizes.push_back(size - std_constant_index(1));
} }
auto *op = linalgOp.getOperation();
SmallVector<Value, 4> res; SmallVector<Value, 4> res;
res.reserve(op->getNumOperands()); res.reserve(tiledOperands.size());
for (auto en : llvm::enumerate(operands)) { for (auto en : llvm::enumerate(tiledOperands)) {
Value shapedOp = en.value(); Value shapedOp = en.value();
ShapedType shapedType = shapedOp.getType().cast<ShapedType>(); ShapedType shapedType = shapedOp.getType().cast<ShapedType>();
unsigned rank = shapedType.getRank(); unsigned rank = shapedType.getRank();
@ -342,6 +339,7 @@ tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
LoopIndexToRangeIndexMap loopIndexToRangeIndex; LoopIndexToRangeIndexMap loopIndexToRangeIndex;
std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges( std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
SmallVector<Attribute, 4> iteratorTypes; SmallVector<Attribute, 4> iteratorTypes;
for (auto attr : for (auto attr :
enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) { enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
@ -574,10 +572,10 @@ void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
static void insertTilingPatterns(OwningRewritePatternList &patterns, static void insertTilingPatterns(OwningRewritePatternList &patterns,
const LinalgTilingOptions &options, const LinalgTilingOptions &options,
MLIRContext *ctx) { MLIRContext *ctx) {
RewritePatternList< RewritePatternList<GenericOp, IndexedGenericOp,
#define GET_OP_LIST #define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::insert(patterns, options, ctx); >::insert(patterns, options, ctx);
} }
static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType, static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,

View File

@ -1,4 +1,4 @@
// RUN: mlir-opt %s -linalg-tile="linalg-tile-sizes=2,3,4" | FileCheck %s // RUN: mlir-opt %s -linalg-tile="linalg-tile-sizes=2,3,4" -split-input-file | FileCheck %s
// CHECK-LABEL: func @matmul_tensors( // CHECK-LABEL: func @matmul_tensors(
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<?x?xf32> // CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
@ -26,3 +26,97 @@ func @matmul_tensors(
// CHECK: return %[[TD0]] : tensor<?x?xf32> // CHECK: return %[[TD0]] : tensor<?x?xf32>
return %0 : tensor<?x?xf32> return %0 : tensor<?x?xf32>
} }
// -----
func @generic_op_tensors(
%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%0 = dim %arg0, %c0 : tensor<?x?x?xf32>
%1 = dim %arg0, %c1 : tensor<?x?x?xf32>
%2 = dim %arg0, %c2 : tensor<?x?x?xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = linalg.generic
{indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d2, d1)>,
affine_map<(d0, d1, d2) -> (d2, d1, d0)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
outs(%3 : tensor<?x?x?xf32>) {
^bb0(%arg2 : f32, %arg3: f32, %arg4: f32):
%5 = addf %arg2, %arg3 : f32
linalg.yield %5 : f32
} -> tensor<?x?x?xf32>
return %4 : tensor<?x?x?xf32>
}
// CHECK-LABEL: func @generic_op_tensors
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
// CHECK: %[[INIT:.+]] = linalg.init_tensor
// CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[STARG0:.+]] = subtensor %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STARG1:.+]] = subtensor %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STARG2:.+]] = subtensor %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STRETURN:.+]] = linalg.generic
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>)
// CHECK: %[[TD:.+]] = subtensor_insert %[[STRETURN]] into %[[TC2]]
// CHECK: scf.yield %[[TD]]
// CHECK: }
// CHECK: scf.yield %[[TD2]]
// CHECK: }
// CHECK: scf.yield %[[TD1]]
// CHECK: }
// CHECK: return %[[TD0]]
// -----
func @indexed_generic_op_tensors(
%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%0 = dim %arg0, %c0 : tensor<?x?x?xf32>
%1 = dim %arg0, %c1 : tensor<?x?x?xf32>
%2 = dim %arg0, %c2 : tensor<?x?x?xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = linalg.indexed_generic
{indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d2, d1)>,
affine_map<(d0, d1, d2) -> (d2, d1, d0)>],
iterator_types = ["parallel", "parallel", "parallel"]}
ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
outs(%3 : tensor<?x?x?xf32>) {
^bb0(%arg2 : index, %arg3 : index, %arg4 : index, %arg5 : f32, %arg6: f32, %arg7: f32):
%5 = addf %arg5, %arg6 : f32
linalg.yield %5 : f32
} -> tensor<?x?x?xf32>
return %4 : tensor<?x?x?xf32>
}
// CHECK-LABEL: func @indexed_generic_op_tensors
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
// CHECK: %[[INIT:.+]] = linalg.init_tensor
// CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
// CHECK: %[[STARG0:.+]] = subtensor %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STARG1:.+]] = subtensor %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STARG2:.+]] = subtensor %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
// CHECK: %[[STRETURN:.+]] = linalg.indexed_generic
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>)
// CHECK: %[[TD:.+]] = subtensor_insert %[[STRETURN]] into %[[TC2]]
// CHECK: scf.yield %[[TD]]
// CHECK: }
// CHECK: scf.yield %[[TD2]]
// CHECK: }
// CHECK: scf.yield %[[TD1]]
// CHECK: }
// CHECK: return %[[TD0]]