forked from OSchip/llvm-project
[mlir][Linalg] NFC: Verify tiling on linalg.generic operation on tensors.
With the recent changes to linalg on tensor semantics, the tiling operations works out-of-the-box for generic operations. Add a test to verify that and some minor refactoring. Differential Revision: https://reviews.llvm.org/D93077
This commit is contained in:
parent
774c9c6ef3
commit
42444d0cf0
|
@ -327,6 +327,21 @@ AffineMap inversePermutation(AffineMap map);
|
|||
/// ```
|
||||
AffineMap concatAffineMaps(ArrayRef<AffineMap> maps);
|
||||
|
||||
/// Returns the map that results from projecting out the dimensions specified in
|
||||
/// `projectedDimensions`. The projected dimensions are set to 0.
|
||||
///
|
||||
/// Example:
|
||||
/// 1) map : affine_map<(d0, d1, d2) -> (d0, d1)>
|
||||
/// projected_dimensions : {2}
|
||||
/// result : affine_map<(d0, d1) -> (d0, d1)>
|
||||
///
|
||||
/// 2) map : affine_map<(d0, d1) -> (d0 + d1)>
|
||||
/// projected_dimensions : {1}
|
||||
/// result : affine_map<(d0) -> (d0)>
|
||||
///
|
||||
/// 3) map : affine_map<(d0, d1, d2) -> (d0, d1)>
|
||||
/// projected_dimensions : {1}
|
||||
/// result : affine_map<(d0, d1) -> (d0, 0)>
|
||||
AffineMap getProjectedMap(AffineMap map,
|
||||
ArrayRef<unsigned> projectedDimensions);
|
||||
|
||||
|
|
|
@ -221,9 +221,8 @@ static bool isTiled(AffineMap map, ValueRange tileSizes) {
|
|||
|
||||
static SmallVector<Value, 4>
|
||||
makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
|
||||
ValueRange operands, AffineMap map, ValueRange ivs,
|
||||
ArrayRef<Value> tiledOperands, AffineMap map, ValueRange ivs,
|
||||
ValueRange tileSizes, ValueRange allShapeSizes) {
|
||||
assert(operands.size() == linalgOp.getShapedOperands().size());
|
||||
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
|
||||
llvm::make_range(tileSizes.begin(), tileSizes.end()),
|
||||
[](Value v) { return !isZero(v); })) &&
|
||||
|
@ -243,11 +242,9 @@ makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
|
|||
subShapeSizes.push_back(size - std_constant_index(1));
|
||||
}
|
||||
|
||||
auto *op = linalgOp.getOperation();
|
||||
|
||||
SmallVector<Value, 4> res;
|
||||
res.reserve(op->getNumOperands());
|
||||
for (auto en : llvm::enumerate(operands)) {
|
||||
res.reserve(tiledOperands.size());
|
||||
for (auto en : llvm::enumerate(tiledOperands)) {
|
||||
Value shapedOp = en.value();
|
||||
ShapedType shapedType = shapedOp.getType().cast<ShapedType>();
|
||||
unsigned rank = shapedType.getRank();
|
||||
|
@ -342,6 +339,7 @@ tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
|
|||
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
||||
std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
|
||||
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
|
||||
|
||||
SmallVector<Attribute, 4> iteratorTypes;
|
||||
for (auto attr :
|
||||
enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
|
||||
|
@ -574,10 +572,10 @@ void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
|
|||
static void insertTilingPatterns(OwningRewritePatternList &patterns,
|
||||
const LinalgTilingOptions &options,
|
||||
MLIRContext *ctx) {
|
||||
RewritePatternList<
|
||||
RewritePatternList<GenericOp, IndexedGenericOp,
|
||||
#define GET_OP_LIST
|
||||
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
||||
>::insert(patterns, options, ctx);
|
||||
>::insert(patterns, options, ctx);
|
||||
}
|
||||
|
||||
static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
// RUN: mlir-opt %s -linalg-tile="linalg-tile-sizes=2,3,4" | FileCheck %s
|
||||
// RUN: mlir-opt %s -linalg-tile="linalg-tile-sizes=2,3,4" -split-input-file | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: func @matmul_tensors(
|
||||
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
|
||||
|
@ -26,3 +26,97 @@ func @matmul_tensors(
|
|||
// CHECK: return %[[TD0]] : tensor<?x?xf32>
|
||||
return %0 : tensor<?x?xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @generic_op_tensors(
|
||||
%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
|
||||
%c0 = constant 0 : index
|
||||
%c1 = constant 1 : index
|
||||
%c2 = constant 2 : index
|
||||
%0 = dim %arg0, %c0 : tensor<?x?x?xf32>
|
||||
%1 = dim %arg0, %c1 : tensor<?x?x?xf32>
|
||||
%2 = dim %arg0, %c2 : tensor<?x?x?xf32>
|
||||
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
|
||||
%4 = linalg.generic
|
||||
{indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
|
||||
affine_map<(d0, d1, d2) -> (d0, d2, d1)>,
|
||||
affine_map<(d0, d1, d2) -> (d2, d1, d0)>],
|
||||
iterator_types = ["parallel", "parallel", "parallel"]}
|
||||
ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
outs(%3 : tensor<?x?x?xf32>) {
|
||||
^bb0(%arg2 : f32, %arg3: f32, %arg4: f32):
|
||||
%5 = addf %arg2, %arg3 : f32
|
||||
linalg.yield %5 : f32
|
||||
} -> tensor<?x?x?xf32>
|
||||
return %4 : tensor<?x?x?xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func @generic_op_tensors
|
||||
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
|
||||
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
|
||||
// CHECK: %[[INIT:.+]] = linalg.init_tensor
|
||||
// CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
|
||||
// CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
|
||||
// CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
|
||||
// CHECK: %[[STARG0:.+]] = subtensor %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
|
||||
// CHECK: %[[STARG1:.+]] = subtensor %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
|
||||
// CHECK: %[[STARG2:.+]] = subtensor %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
|
||||
// CHECK: %[[STRETURN:.+]] = linalg.generic
|
||||
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>)
|
||||
// CHECK: %[[TD:.+]] = subtensor_insert %[[STRETURN]] into %[[TC2]]
|
||||
// CHECK: scf.yield %[[TD]]
|
||||
// CHECK: }
|
||||
// CHECK: scf.yield %[[TD2]]
|
||||
// CHECK: }
|
||||
// CHECK: scf.yield %[[TD1]]
|
||||
// CHECK: }
|
||||
// CHECK: return %[[TD0]]
|
||||
|
||||
// -----
|
||||
|
||||
func @indexed_generic_op_tensors(
|
||||
%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
|
||||
%c0 = constant 0 : index
|
||||
%c1 = constant 1 : index
|
||||
%c2 = constant 2 : index
|
||||
%0 = dim %arg0, %c0 : tensor<?x?x?xf32>
|
||||
%1 = dim %arg0, %c1 : tensor<?x?x?xf32>
|
||||
%2 = dim %arg0, %c2 : tensor<?x?x?xf32>
|
||||
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
|
||||
%4 = linalg.indexed_generic
|
||||
{indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
|
||||
affine_map<(d0, d1, d2) -> (d0, d2, d1)>,
|
||||
affine_map<(d0, d1, d2) -> (d2, d1, d0)>],
|
||||
iterator_types = ["parallel", "parallel", "parallel"]}
|
||||
ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
outs(%3 : tensor<?x?x?xf32>) {
|
||||
^bb0(%arg2 : index, %arg3 : index, %arg4 : index, %arg5 : f32, %arg6: f32, %arg7: f32):
|
||||
%5 = addf %arg5, %arg6 : f32
|
||||
linalg.yield %5 : f32
|
||||
} -> tensor<?x?x?xf32>
|
||||
return %4 : tensor<?x?x?xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func @indexed_generic_op_tensors
|
||||
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
|
||||
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
|
||||
// CHECK: %[[INIT:.+]] = linalg.init_tensor
|
||||
// CHECK: %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
|
||||
// CHECK: %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
|
||||
// CHECK: %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
|
||||
// CHECK: %[[STARG0:.+]] = subtensor %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
|
||||
// CHECK: %[[STARG1:.+]] = subtensor %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
|
||||
// CHECK: %[[STARG2:.+]] = subtensor %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
|
||||
// CHECK: %[[STRETURN:.+]] = linalg.indexed_generic
|
||||
// CHECK-SAME: ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
// CHECK-SAME: outs(%[[STARG2]] : tensor<?x?x?xf32>)
|
||||
// CHECK: %[[TD:.+]] = subtensor_insert %[[STRETURN]] into %[[TC2]]
|
||||
// CHECK: scf.yield %[[TD]]
|
||||
// CHECK: }
|
||||
// CHECK: scf.yield %[[TD2]]
|
||||
// CHECK: }
|
||||
// CHECK: scf.yield %[[TD1]]
|
||||
// CHECK: }
|
||||
// CHECK: return %[[TD0]]
|
||||
|
|
Loading…
Reference in New Issue