forked from OSchip/llvm-project
parent
356ead3f36
commit
410bd52561
|
@ -105,362 +105,357 @@
|
|||
|
||||
namespace llvm {
|
||||
|
||||
/* Exponents are stored as signed numbers. */
|
||||
typedef signed short exponent_t;
|
||||
/* Exponents are stored as signed numbers. */
|
||||
typedef signed short exponent_t;
|
||||
|
||||
struct fltSemantics;
|
||||
class APSInt;
|
||||
class StringRef;
|
||||
struct fltSemantics;
|
||||
class APSInt;
|
||||
class StringRef;
|
||||
|
||||
/* When bits of a floating point number are truncated, this enum is
|
||||
used to indicate what fraction of the LSB those bits represented.
|
||||
It essentially combines the roles of guard and sticky bits. */
|
||||
enum lostFraction { // Example of truncated bits:
|
||||
lfExactlyZero, // 000000
|
||||
lfLessThanHalf, // 0xxxxx x's not all zero
|
||||
lfExactlyHalf, // 100000
|
||||
lfMoreThanHalf // 1xxxxx x's not all zero
|
||||
/* When bits of a floating point number are truncated, this enum is
|
||||
used to indicate what fraction of the LSB those bits represented.
|
||||
It essentially combines the roles of guard and sticky bits. */
|
||||
enum lostFraction { // Example of truncated bits:
|
||||
lfExactlyZero, // 000000
|
||||
lfLessThanHalf, // 0xxxxx x's not all zero
|
||||
lfExactlyHalf, // 100000
|
||||
lfMoreThanHalf // 1xxxxx x's not all zero
|
||||
};
|
||||
|
||||
class APFloat {
|
||||
public:
|
||||
|
||||
/* We support the following floating point semantics. */
|
||||
static const fltSemantics IEEEhalf;
|
||||
static const fltSemantics IEEEsingle;
|
||||
static const fltSemantics IEEEdouble;
|
||||
static const fltSemantics IEEEquad;
|
||||
static const fltSemantics PPCDoubleDouble;
|
||||
static const fltSemantics x87DoubleExtended;
|
||||
/* And this pseudo, used to construct APFloats that cannot
|
||||
conflict with anything real. */
|
||||
static const fltSemantics Bogus;
|
||||
|
||||
static unsigned int semanticsPrecision(const fltSemantics &);
|
||||
|
||||
/* Floating point numbers have a four-state comparison relation. */
|
||||
enum cmpResult {
|
||||
cmpLessThan,
|
||||
cmpEqual,
|
||||
cmpGreaterThan,
|
||||
cmpUnordered
|
||||
};
|
||||
|
||||
class APFloat {
|
||||
public:
|
||||
|
||||
/* We support the following floating point semantics. */
|
||||
static const fltSemantics IEEEhalf;
|
||||
static const fltSemantics IEEEsingle;
|
||||
static const fltSemantics IEEEdouble;
|
||||
static const fltSemantics IEEEquad;
|
||||
static const fltSemantics PPCDoubleDouble;
|
||||
static const fltSemantics x87DoubleExtended;
|
||||
/* And this pseudo, used to construct APFloats that cannot
|
||||
conflict with anything real. */
|
||||
static const fltSemantics Bogus;
|
||||
|
||||
static unsigned int semanticsPrecision(const fltSemantics &);
|
||||
|
||||
/* Floating point numbers have a four-state comparison relation. */
|
||||
enum cmpResult {
|
||||
cmpLessThan,
|
||||
cmpEqual,
|
||||
cmpGreaterThan,
|
||||
cmpUnordered
|
||||
};
|
||||
|
||||
/* IEEE-754R gives five rounding modes. */
|
||||
enum roundingMode {
|
||||
rmNearestTiesToEven,
|
||||
rmTowardPositive,
|
||||
rmTowardNegative,
|
||||
rmTowardZero,
|
||||
rmNearestTiesToAway
|
||||
};
|
||||
|
||||
// Operation status. opUnderflow or opOverflow are always returned
|
||||
// or-ed with opInexact.
|
||||
enum opStatus {
|
||||
opOK = 0x00,
|
||||
opInvalidOp = 0x01,
|
||||
opDivByZero = 0x02,
|
||||
opOverflow = 0x04,
|
||||
opUnderflow = 0x08,
|
||||
opInexact = 0x10
|
||||
};
|
||||
|
||||
// Category of internally-represented number.
|
||||
enum fltCategory {
|
||||
fcInfinity,
|
||||
fcNaN,
|
||||
fcNormal,
|
||||
fcZero
|
||||
};
|
||||
|
||||
enum uninitializedTag {
|
||||
uninitialized
|
||||
};
|
||||
|
||||
// Constructors.
|
||||
APFloat(const fltSemantics &); // Default construct to 0.0
|
||||
APFloat(const fltSemantics &, StringRef);
|
||||
APFloat(const fltSemantics &, integerPart);
|
||||
APFloat(const fltSemantics &, fltCategory, bool negative);
|
||||
APFloat(const fltSemantics &, uninitializedTag);
|
||||
APFloat(const fltSemantics &, const APInt &);
|
||||
explicit APFloat(double d);
|
||||
explicit APFloat(float f);
|
||||
APFloat(const APFloat &);
|
||||
~APFloat();
|
||||
|
||||
// Convenience "constructors"
|
||||
static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
|
||||
return APFloat(Sem, fcZero, Negative);
|
||||
}
|
||||
static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
|
||||
return APFloat(Sem, fcInfinity, Negative);
|
||||
}
|
||||
|
||||
/// getNaN - Factory for QNaN values.
|
||||
///
|
||||
/// \param Negative - True iff the NaN generated should be negative.
|
||||
/// \param type - The unspecified fill bits for creating the NaN, 0 by
|
||||
/// default. The value is truncated as necessary.
|
||||
static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
|
||||
unsigned type = 0) {
|
||||
if (type) {
|
||||
APInt fill(64, type);
|
||||
return getQNaN(Sem, Negative, &fill);
|
||||
} else {
|
||||
return getQNaN(Sem, Negative, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/// getQNan - Factory for QNaN values.
|
||||
static APFloat getQNaN(const fltSemantics &Sem,
|
||||
bool Negative = false,
|
||||
const APInt *payload = 0) {
|
||||
return makeNaN(Sem, false, Negative, payload);
|
||||
}
|
||||
|
||||
/// getSNan - Factory for SNaN values.
|
||||
static APFloat getSNaN(const fltSemantics &Sem,
|
||||
bool Negative = false,
|
||||
const APInt *payload = 0) {
|
||||
return makeNaN(Sem, true, Negative, payload);
|
||||
}
|
||||
|
||||
/// getLargest - Returns the largest finite number in the given
|
||||
/// semantics.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
|
||||
|
||||
/// getSmallest - Returns the smallest (by magnitude) finite number
|
||||
/// in the given semantics. Might be denormalized, which implies a
|
||||
/// relative loss of precision.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
|
||||
|
||||
/// getSmallestNormalized - Returns the smallest (by magnitude)
|
||||
/// normalized finite number in the given semantics.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getSmallestNormalized(const fltSemantics &Sem,
|
||||
bool Negative = false);
|
||||
|
||||
/// getAllOnesValue - Returns a float which is bitcasted from
|
||||
/// an all one value int.
|
||||
///
|
||||
/// \param BitWidth - Select float type
|
||||
/// \param isIEEE - If 128 bit number, select between PPC and IEEE
|
||||
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
|
||||
|
||||
/// Profile - Used to insert APFloat objects, or objects that contain
|
||||
/// APFloat objects, into FoldingSets.
|
||||
void Profile(FoldingSetNodeID& NID) const;
|
||||
|
||||
/// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
|
||||
void Emit(Serializer& S) const;
|
||||
|
||||
/// @brief Used by the Bitcode deserializer to deserialize APInts.
|
||||
static APFloat ReadVal(Deserializer& D);
|
||||
|
||||
/* Arithmetic. */
|
||||
opStatus add(const APFloat &, roundingMode);
|
||||
opStatus subtract(const APFloat &, roundingMode);
|
||||
opStatus multiply(const APFloat &, roundingMode);
|
||||
opStatus divide(const APFloat &, roundingMode);
|
||||
/* IEEE remainder. */
|
||||
opStatus remainder(const APFloat &);
|
||||
/* C fmod, or llvm frem. */
|
||||
opStatus mod(const APFloat &, roundingMode);
|
||||
opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
|
||||
opStatus roundToIntegral(roundingMode);
|
||||
|
||||
/* Sign operations. */
|
||||
void changeSign();
|
||||
void clearSign();
|
||||
void copySign(const APFloat &);
|
||||
|
||||
/* Conversions. */
|
||||
opStatus convert(const fltSemantics &, roundingMode, bool *);
|
||||
opStatus convertToInteger(integerPart *, unsigned int, bool,
|
||||
roundingMode, bool *) const;
|
||||
opStatus convertToInteger(APSInt&, roundingMode, bool *) const;
|
||||
opStatus convertFromAPInt(const APInt &,
|
||||
bool, roundingMode);
|
||||
opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
|
||||
bool, roundingMode);
|
||||
opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
|
||||
bool, roundingMode);
|
||||
opStatus convertFromString(StringRef, roundingMode);
|
||||
APInt bitcastToAPInt() const;
|
||||
double convertToDouble() const;
|
||||
float convertToFloat() const;
|
||||
|
||||
/* The definition of equality is not straightforward for floating point,
|
||||
so we won't use operator==. Use one of the following, or write
|
||||
whatever it is you really mean. */
|
||||
bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
|
||||
|
||||
/* IEEE comparison with another floating point number (NaNs
|
||||
compare unordered, 0==-0). */
|
||||
cmpResult compare(const APFloat &) const;
|
||||
|
||||
/* Bitwise comparison for equality (QNaNs compare equal, 0!=-0). */
|
||||
bool bitwiseIsEqual(const APFloat &) const;
|
||||
|
||||
/* Write out a hexadecimal representation of the floating point
|
||||
value to DST, which must be of sufficient size, in the C99 form
|
||||
[-]0xh.hhhhp[+-]d. Return the number of characters written,
|
||||
excluding the terminating NUL. */
|
||||
unsigned int convertToHexString(char *dst, unsigned int hexDigits,
|
||||
bool upperCase, roundingMode) const;
|
||||
|
||||
/* Simple queries. */
|
||||
fltCategory getCategory() const { return category; }
|
||||
const fltSemantics &getSemantics() const { return *semantics; }
|
||||
bool isZero() const { return category == fcZero; }
|
||||
bool isNonZero() const { return category != fcZero; }
|
||||
bool isNormal() const { return category == fcNormal; }
|
||||
bool isNaN() const { return category == fcNaN; }
|
||||
bool isInfinity() const { return category == fcInfinity; }
|
||||
bool isNegative() const { return sign; }
|
||||
bool isPosZero() const { return isZero() && !isNegative(); }
|
||||
bool isNegZero() const { return isZero() && isNegative(); }
|
||||
bool isDenormal() const;
|
||||
|
||||
APFloat& operator=(const APFloat &);
|
||||
|
||||
/// \brief Overload to compute a hash code for an APFloat value.
|
||||
///
|
||||
/// Note that the use of hash codes for floating point values is in general
|
||||
/// frought with peril. Equality is hard to define for these values. For
|
||||
/// example, should negative and positive zero hash to different codes? Are
|
||||
/// they equal or not? This hash value implementation specifically
|
||||
/// emphasizes producing different codes for different inputs in order to
|
||||
/// be used in canonicalization and memoization. As such, equality is
|
||||
/// bitwiseIsEqual, and 0 != -0.
|
||||
friend hash_code hash_value(const APFloat &Arg);
|
||||
|
||||
/// Converts this value into a decimal string.
|
||||
///
|
||||
/// \param FormatPrecision The maximum number of digits of
|
||||
/// precision to output. If there are fewer digits available,
|
||||
/// zero padding will not be used unless the value is
|
||||
/// integral and small enough to be expressed in
|
||||
/// FormatPrecision digits. 0 means to use the natural
|
||||
/// precision of the number.
|
||||
/// \param FormatMaxPadding The maximum number of zeros to
|
||||
/// consider inserting before falling back to scientific
|
||||
/// notation. 0 means to always use scientific notation.
|
||||
///
|
||||
/// Number Precision MaxPadding Result
|
||||
/// ------ --------- ---------- ------
|
||||
/// 1.01E+4 5 2 10100
|
||||
/// 1.01E+4 4 2 1.01E+4
|
||||
/// 1.01E+4 5 1 1.01E+4
|
||||
/// 1.01E-2 5 2 0.0101
|
||||
/// 1.01E-2 4 2 0.0101
|
||||
/// 1.01E-2 4 1 1.01E-2
|
||||
void toString(SmallVectorImpl<char> &Str,
|
||||
unsigned FormatPrecision = 0,
|
||||
unsigned FormatMaxPadding = 3) const;
|
||||
|
||||
/// getExactInverse - If this value has an exact multiplicative inverse,
|
||||
/// store it in inv and return true.
|
||||
bool getExactInverse(APFloat *inv) const;
|
||||
|
||||
private:
|
||||
|
||||
/* Trivial queries. */
|
||||
integerPart *significandParts();
|
||||
const integerPart *significandParts() const;
|
||||
unsigned int partCount() const;
|
||||
|
||||
/* Significand operations. */
|
||||
integerPart addSignificand(const APFloat &);
|
||||
integerPart subtractSignificand(const APFloat &, integerPart);
|
||||
lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
|
||||
lostFraction multiplySignificand(const APFloat &, const APFloat *);
|
||||
lostFraction divideSignificand(const APFloat &);
|
||||
void incrementSignificand();
|
||||
void initialize(const fltSemantics *);
|
||||
void shiftSignificandLeft(unsigned int);
|
||||
lostFraction shiftSignificandRight(unsigned int);
|
||||
unsigned int significandLSB() const;
|
||||
unsigned int significandMSB() const;
|
||||
void zeroSignificand();
|
||||
|
||||
/* Arithmetic on special values. */
|
||||
opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
|
||||
opStatus divideSpecials(const APFloat &);
|
||||
opStatus multiplySpecials(const APFloat &);
|
||||
opStatus modSpecials(const APFloat &);
|
||||
|
||||
/* Miscellany. */
|
||||
static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
|
||||
const APInt *fill);
|
||||
void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
|
||||
opStatus normalize(roundingMode, lostFraction);
|
||||
opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
|
||||
cmpResult compareAbsoluteValue(const APFloat &) const;
|
||||
opStatus handleOverflow(roundingMode);
|
||||
bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
|
||||
opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
|
||||
roundingMode, bool *) const;
|
||||
opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
|
||||
roundingMode);
|
||||
opStatus convertFromHexadecimalString(StringRef, roundingMode);
|
||||
opStatus convertFromDecimalString(StringRef, roundingMode);
|
||||
char *convertNormalToHexString(char *, unsigned int, bool,
|
||||
roundingMode) const;
|
||||
opStatus roundSignificandWithExponent(const integerPart *, unsigned int,
|
||||
int, roundingMode);
|
||||
|
||||
APInt convertHalfAPFloatToAPInt() const;
|
||||
APInt convertFloatAPFloatToAPInt() const;
|
||||
APInt convertDoubleAPFloatToAPInt() const;
|
||||
APInt convertQuadrupleAPFloatToAPInt() const;
|
||||
APInt convertF80LongDoubleAPFloatToAPInt() const;
|
||||
APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
|
||||
void initFromAPInt(const fltSemantics *Sem, const APInt& api);
|
||||
void initFromHalfAPInt(const APInt& api);
|
||||
void initFromFloatAPInt(const APInt& api);
|
||||
void initFromDoubleAPInt(const APInt& api);
|
||||
void initFromQuadrupleAPInt(const APInt &api);
|
||||
void initFromF80LongDoubleAPInt(const APInt& api);
|
||||
void initFromPPCDoubleDoubleAPInt(const APInt& api);
|
||||
|
||||
void assign(const APFloat &);
|
||||
void copySignificand(const APFloat &);
|
||||
void freeSignificand();
|
||||
|
||||
/* What kind of semantics does this value obey? */
|
||||
const fltSemantics *semantics;
|
||||
|
||||
/* Significand - the fraction with an explicit integer bit. Must be
|
||||
at least one bit wider than the target precision. */
|
||||
union Significand
|
||||
{
|
||||
integerPart part;
|
||||
integerPart *parts;
|
||||
} significand;
|
||||
|
||||
/* The exponent - a signed number. */
|
||||
exponent_t exponent;
|
||||
|
||||
/* What kind of floating point number this is. */
|
||||
/* Only 2 bits are required, but VisualStudio incorrectly sign extends
|
||||
it. Using the extra bit keeps it from failing under VisualStudio */
|
||||
fltCategory category: 3;
|
||||
|
||||
/* The sign bit of this number. */
|
||||
unsigned int sign: 1;
|
||||
/* IEEE-754R gives five rounding modes. */
|
||||
enum roundingMode {
|
||||
rmNearestTiesToEven,
|
||||
rmTowardPositive,
|
||||
rmTowardNegative,
|
||||
rmTowardZero,
|
||||
rmNearestTiesToAway
|
||||
};
|
||||
|
||||
// See friend declaration above. This additional declaration is required in
|
||||
// order to compile LLVM with IBM xlC compiler.
|
||||
hash_code hash_value(const APFloat &Arg);
|
||||
// Operation status. opUnderflow or opOverflow are always returned
|
||||
// or-ed with opInexact.
|
||||
enum opStatus {
|
||||
opOK = 0x00,
|
||||
opInvalidOp = 0x01,
|
||||
opDivByZero = 0x02,
|
||||
opOverflow = 0x04,
|
||||
opUnderflow = 0x08,
|
||||
opInexact = 0x10
|
||||
};
|
||||
|
||||
// Category of internally-represented number.
|
||||
enum fltCategory {
|
||||
fcInfinity,
|
||||
fcNaN,
|
||||
fcNormal,
|
||||
fcZero
|
||||
};
|
||||
|
||||
enum uninitializedTag {
|
||||
uninitialized
|
||||
};
|
||||
|
||||
// Constructors.
|
||||
APFloat(const fltSemantics &); // Default construct to 0.0
|
||||
APFloat(const fltSemantics &, StringRef);
|
||||
APFloat(const fltSemantics &, integerPart);
|
||||
APFloat(const fltSemantics &, fltCategory, bool negative);
|
||||
APFloat(const fltSemantics &, uninitializedTag);
|
||||
APFloat(const fltSemantics &, const APInt &);
|
||||
explicit APFloat(double d);
|
||||
explicit APFloat(float f);
|
||||
APFloat(const APFloat &);
|
||||
~APFloat();
|
||||
|
||||
// Convenience "constructors"
|
||||
static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
|
||||
return APFloat(Sem, fcZero, Negative);
|
||||
}
|
||||
static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
|
||||
return APFloat(Sem, fcInfinity, Negative);
|
||||
}
|
||||
|
||||
/// getNaN - Factory for QNaN values.
|
||||
///
|
||||
/// \param Negative - True iff the NaN generated should be negative.
|
||||
/// \param type - The unspecified fill bits for creating the NaN, 0 by
|
||||
/// default. The value is truncated as necessary.
|
||||
static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
|
||||
unsigned type = 0) {
|
||||
if (type) {
|
||||
APInt fill(64, type);
|
||||
return getQNaN(Sem, Negative, &fill);
|
||||
} else {
|
||||
return getQNaN(Sem, Negative, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/// getQNan - Factory for QNaN values.
|
||||
static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
|
||||
const APInt *payload = 0) {
|
||||
return makeNaN(Sem, false, Negative, payload);
|
||||
}
|
||||
|
||||
/// getSNan - Factory for SNaN values.
|
||||
static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
|
||||
const APInt *payload = 0) {
|
||||
return makeNaN(Sem, true, Negative, payload);
|
||||
}
|
||||
|
||||
/// getLargest - Returns the largest finite number in the given
|
||||
/// semantics.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
|
||||
|
||||
/// getSmallest - Returns the smallest (by magnitude) finite number
|
||||
/// in the given semantics. Might be denormalized, which implies a
|
||||
/// relative loss of precision.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
|
||||
|
||||
/// getSmallestNormalized - Returns the smallest (by magnitude)
|
||||
/// normalized finite number in the given semantics.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getSmallestNormalized(const fltSemantics &Sem,
|
||||
bool Negative = false);
|
||||
|
||||
/// getAllOnesValue - Returns a float which is bitcasted from
|
||||
/// an all one value int.
|
||||
///
|
||||
/// \param BitWidth - Select float type
|
||||
/// \param isIEEE - If 128 bit number, select between PPC and IEEE
|
||||
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
|
||||
|
||||
/// Profile - Used to insert APFloat objects, or objects that contain
|
||||
/// APFloat objects, into FoldingSets.
|
||||
void Profile(FoldingSetNodeID &NID) const;
|
||||
|
||||
/// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
|
||||
void Emit(Serializer &S) const;
|
||||
|
||||
/// @brief Used by the Bitcode deserializer to deserialize APInts.
|
||||
static APFloat ReadVal(Deserializer &D);
|
||||
|
||||
/* Arithmetic. */
|
||||
opStatus add(const APFloat &, roundingMode);
|
||||
opStatus subtract(const APFloat &, roundingMode);
|
||||
opStatus multiply(const APFloat &, roundingMode);
|
||||
opStatus divide(const APFloat &, roundingMode);
|
||||
/* IEEE remainder. */
|
||||
opStatus remainder(const APFloat &);
|
||||
/* C fmod, or llvm frem. */
|
||||
opStatus mod(const APFloat &, roundingMode);
|
||||
opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
|
||||
opStatus roundToIntegral(roundingMode);
|
||||
|
||||
/* Sign operations. */
|
||||
void changeSign();
|
||||
void clearSign();
|
||||
void copySign(const APFloat &);
|
||||
|
||||
/* Conversions. */
|
||||
opStatus convert(const fltSemantics &, roundingMode, bool *);
|
||||
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
|
||||
bool *) const;
|
||||
opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
|
||||
opStatus convertFromAPInt(const APInt &, bool, roundingMode);
|
||||
opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
|
||||
bool, roundingMode);
|
||||
opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
|
||||
bool, roundingMode);
|
||||
opStatus convertFromString(StringRef, roundingMode);
|
||||
APInt bitcastToAPInt() const;
|
||||
double convertToDouble() const;
|
||||
float convertToFloat() const;
|
||||
|
||||
/* The definition of equality is not straightforward for floating point,
|
||||
so we won't use operator==. Use one of the following, or write
|
||||
whatever it is you really mean. */
|
||||
bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
|
||||
|
||||
/* IEEE comparison with another floating point number (NaNs
|
||||
compare unordered, 0==-0). */
|
||||
cmpResult compare(const APFloat &) const;
|
||||
|
||||
/* Bitwise comparison for equality (QNaNs compare equal, 0!=-0). */
|
||||
bool bitwiseIsEqual(const APFloat &) const;
|
||||
|
||||
/* Write out a hexadecimal representation of the floating point
|
||||
value to DST, which must be of sufficient size, in the C99 form
|
||||
[-]0xh.hhhhp[+-]d. Return the number of characters written,
|
||||
excluding the terminating NUL. */
|
||||
unsigned int convertToHexString(char *dst, unsigned int hexDigits,
|
||||
bool upperCase, roundingMode) const;
|
||||
|
||||
/* Simple queries. */
|
||||
fltCategory getCategory() const { return category; }
|
||||
const fltSemantics &getSemantics() const { return *semantics; }
|
||||
bool isZero() const { return category == fcZero; }
|
||||
bool isNonZero() const { return category != fcZero; }
|
||||
bool isNormal() const { return category == fcNormal; }
|
||||
bool isNaN() const { return category == fcNaN; }
|
||||
bool isInfinity() const { return category == fcInfinity; }
|
||||
bool isNegative() const { return sign; }
|
||||
bool isPosZero() const { return isZero() && !isNegative(); }
|
||||
bool isNegZero() const { return isZero() && isNegative(); }
|
||||
bool isDenormal() const;
|
||||
|
||||
APFloat &operator=(const APFloat &);
|
||||
|
||||
/// \brief Overload to compute a hash code for an APFloat value.
|
||||
///
|
||||
/// Note that the use of hash codes for floating point values is in general
|
||||
/// frought with peril. Equality is hard to define for these values. For
|
||||
/// example, should negative and positive zero hash to different codes? Are
|
||||
/// they equal or not? This hash value implementation specifically
|
||||
/// emphasizes producing different codes for different inputs in order to
|
||||
/// be used in canonicalization and memoization. As such, equality is
|
||||
/// bitwiseIsEqual, and 0 != -0.
|
||||
friend hash_code hash_value(const APFloat &Arg);
|
||||
|
||||
/// Converts this value into a decimal string.
|
||||
///
|
||||
/// \param FormatPrecision The maximum number of digits of
|
||||
/// precision to output. If there are fewer digits available,
|
||||
/// zero padding will not be used unless the value is
|
||||
/// integral and small enough to be expressed in
|
||||
/// FormatPrecision digits. 0 means to use the natural
|
||||
/// precision of the number.
|
||||
/// \param FormatMaxPadding The maximum number of zeros to
|
||||
/// consider inserting before falling back to scientific
|
||||
/// notation. 0 means to always use scientific notation.
|
||||
///
|
||||
/// Number Precision MaxPadding Result
|
||||
/// ------ --------- ---------- ------
|
||||
/// 1.01E+4 5 2 10100
|
||||
/// 1.01E+4 4 2 1.01E+4
|
||||
/// 1.01E+4 5 1 1.01E+4
|
||||
/// 1.01E-2 5 2 0.0101
|
||||
/// 1.01E-2 4 2 0.0101
|
||||
/// 1.01E-2 4 1 1.01E-2
|
||||
void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
|
||||
unsigned FormatMaxPadding = 3) const;
|
||||
|
||||
/// getExactInverse - If this value has an exact multiplicative inverse,
|
||||
/// store it in inv and return true.
|
||||
bool getExactInverse(APFloat *inv) const;
|
||||
|
||||
private:
|
||||
|
||||
/* Trivial queries. */
|
||||
integerPart *significandParts();
|
||||
const integerPart *significandParts() const;
|
||||
unsigned int partCount() const;
|
||||
|
||||
/* Significand operations. */
|
||||
integerPart addSignificand(const APFloat &);
|
||||
integerPart subtractSignificand(const APFloat &, integerPart);
|
||||
lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
|
||||
lostFraction multiplySignificand(const APFloat &, const APFloat *);
|
||||
lostFraction divideSignificand(const APFloat &);
|
||||
void incrementSignificand();
|
||||
void initialize(const fltSemantics *);
|
||||
void shiftSignificandLeft(unsigned int);
|
||||
lostFraction shiftSignificandRight(unsigned int);
|
||||
unsigned int significandLSB() const;
|
||||
unsigned int significandMSB() const;
|
||||
void zeroSignificand();
|
||||
|
||||
/* Arithmetic on special values. */
|
||||
opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
|
||||
opStatus divideSpecials(const APFloat &);
|
||||
opStatus multiplySpecials(const APFloat &);
|
||||
opStatus modSpecials(const APFloat &);
|
||||
|
||||
/* Miscellany. */
|
||||
static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
|
||||
const APInt *fill);
|
||||
void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
|
||||
opStatus normalize(roundingMode, lostFraction);
|
||||
opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
|
||||
cmpResult compareAbsoluteValue(const APFloat &) const;
|
||||
opStatus handleOverflow(roundingMode);
|
||||
bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
|
||||
opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
|
||||
roundingMode, bool *) const;
|
||||
opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
|
||||
roundingMode);
|
||||
opStatus convertFromHexadecimalString(StringRef, roundingMode);
|
||||
opStatus convertFromDecimalString(StringRef, roundingMode);
|
||||
char *convertNormalToHexString(char *, unsigned int, bool,
|
||||
roundingMode) const;
|
||||
opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
|
||||
roundingMode);
|
||||
|
||||
APInt convertHalfAPFloatToAPInt() const;
|
||||
APInt convertFloatAPFloatToAPInt() const;
|
||||
APInt convertDoubleAPFloatToAPInt() const;
|
||||
APInt convertQuadrupleAPFloatToAPInt() const;
|
||||
APInt convertF80LongDoubleAPFloatToAPInt() const;
|
||||
APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
|
||||
void initFromAPInt(const fltSemantics *Sem, const APInt &api);
|
||||
void initFromHalfAPInt(const APInt &api);
|
||||
void initFromFloatAPInt(const APInt &api);
|
||||
void initFromDoubleAPInt(const APInt &api);
|
||||
void initFromQuadrupleAPInt(const APInt &api);
|
||||
void initFromF80LongDoubleAPInt(const APInt &api);
|
||||
void initFromPPCDoubleDoubleAPInt(const APInt &api);
|
||||
|
||||
void assign(const APFloat &);
|
||||
void copySignificand(const APFloat &);
|
||||
void freeSignificand();
|
||||
|
||||
/* What kind of semantics does this value obey? */
|
||||
const fltSemantics *semantics;
|
||||
|
||||
/* Significand - the fraction with an explicit integer bit. Must be
|
||||
at least one bit wider than the target precision. */
|
||||
union Significand {
|
||||
integerPart part;
|
||||
integerPart *parts;
|
||||
} significand;
|
||||
|
||||
/* The exponent - a signed number. */
|
||||
exponent_t exponent;
|
||||
|
||||
/* What kind of floating point number this is. */
|
||||
/* Only 2 bits are required, but VisualStudio incorrectly sign extends
|
||||
it. Using the extra bit keeps it from failing under VisualStudio */
|
||||
fltCategory category : 3;
|
||||
|
||||
/* The sign bit of this number. */
|
||||
unsigned int sign : 1;
|
||||
};
|
||||
|
||||
// See friend declaration above. This additional declaration is required in
|
||||
// order to compile LLVM with IBM xlC compiler.
|
||||
hash_code hash_value(const APFloat &Arg);
|
||||
} /* namespace llvm */
|
||||
|
||||
#endif /* LLVM_ADT_APFLOAT_H */
|
||||
|
|
Loading…
Reference in New Issue