[mlir][VectorOps] Expose SuperVectorizer as a utility

This patch refactors a small part of the Super Vectorizer code to
a utility so that it can be used independently from the pass. This
aligns vectorization with other utilities that we already have for loop
transformations, such as fusion, interchange, tiling, etc.

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D84289
This commit is contained in:
Diego Caballero 2020-07-22 14:10:29 -07:00
parent dbdda8232a
commit 3fff5acd8f
2 changed files with 37 additions and 9 deletions

View File

@ -13,12 +13,15 @@
#ifndef MLIR_DIALECT_AFFINE_UTILS_H
#define MLIR_DIALECT_AFFINE_UTILS_H
#include "mlir/Support/LLVM.h"
namespace mlir {
class AffineForOp;
class AffineIfOp;
class AffineParallelOp;
struct LogicalResult;
class Operation;
/// Replaces parallel affine.for op with 1-d affine.parallel op.
/// mlir::isLoopParallel detect the parallel affine.for ops.
@ -31,6 +34,15 @@ void affineParallelize(AffineForOp forOp);
/// significant code expansion in some cases.
LogicalResult hoistAffineIfOp(AffineIfOp ifOp, bool *folded = nullptr);
/// Vectorizes affine loops in 'loops' using the n-D vectorization factors in
/// 'vectorSizes'. By default, each vectorization factor is applied
/// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can
/// be optionally used to provide a different loop vectorization order.
void vectorizeAffineLoops(
Operation *parentOp,
llvm::DenseSet<Operation *, DenseMapInfo<Operation *>> &loops,
ArrayRef<int64_t> vectorSizes, ArrayRef<int64_t> fastestVaryingPattern);
} // namespace mlir
#endif // MLIR_DIALECT_AFFINE_UTILS_H

View File

@ -18,6 +18,7 @@
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
@ -1198,25 +1199,38 @@ void Vectorize::runOnFunction() {
return signalPassFailure();
}
// Thread-safe RAII local context, BumpPtrAllocator freed on exit.
NestedPatternContext mlContext;
DenseSet<Operation *> parallelLoops;
f.walk([&parallelLoops](AffineForOp loop) {
if (isLoopParallel(loop))
parallelLoops.insert(loop);
});
vectorizeAffineLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern);
}
namespace mlir {
/// Vectorizes affine loops in 'loops' using the n-D vectorization factors in
/// 'vectorSizes'. By default, each vectorization factor is applied
/// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can
/// be optionally used to provide a different loop vectorization order.
void vectorizeAffineLoops(Operation *parentOp, DenseSet<Operation *> &loops,
ArrayRef<int64_t> vectorSizes,
ArrayRef<int64_t> fastestVaryingPattern) {
// Thread-safe RAII local context, BumpPtrAllocator freed on exit.
NestedPatternContext mlContext;
for (auto &pat :
makePatterns(parallelLoops, vectorSizes.size(), fastestVaryingPattern)) {
makePatterns(loops, vectorSizes.size(), fastestVaryingPattern)) {
LLVM_DEBUG(dbgs() << "\n******************************************");
LLVM_DEBUG(dbgs() << "\n******************************************");
LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on Function\n");
LLVM_DEBUG(f.print(dbgs()));
LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on parent op\n");
LLVM_DEBUG(parentOp->print(dbgs()));
unsigned patternDepth = pat.getDepth();
SmallVector<NestedMatch, 8> matches;
pat.match(f, &matches);
pat.match(parentOp, &matches);
// Iterate over all the top-level matches and vectorize eagerly.
// This automatically prunes intersecting matches.
for (auto m : matches) {
@ -1239,9 +1253,11 @@ void Vectorize::runOnFunction() {
}
std::unique_ptr<OperationPass<FuncOp>>
mlir::createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) {
createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) {
return std::make_unique<Vectorize>(virtualVectorSize);
}
std::unique_ptr<OperationPass<FuncOp>> mlir::createSuperVectorizePass() {
std::unique_ptr<OperationPass<FuncOp>> createSuperVectorizePass() {
return std::make_unique<Vectorize>();
}
} // namespace mlir