forked from OSchip/llvm-project
[mlir][VectorOps] Expose SuperVectorizer as a utility
This patch refactors a small part of the Super Vectorizer code to a utility so that it can be used independently from the pass. This aligns vectorization with other utilities that we already have for loop transformations, such as fusion, interchange, tiling, etc. Reviewed By: nicolasvasilache Differential Revision: https://reviews.llvm.org/D84289
This commit is contained in:
parent
dbdda8232a
commit
3fff5acd8f
|
@ -13,12 +13,15 @@
|
|||
#ifndef MLIR_DIALECT_AFFINE_UTILS_H
|
||||
#define MLIR_DIALECT_AFFINE_UTILS_H
|
||||
|
||||
#include "mlir/Support/LLVM.h"
|
||||
|
||||
namespace mlir {
|
||||
|
||||
class AffineForOp;
|
||||
class AffineIfOp;
|
||||
class AffineParallelOp;
|
||||
struct LogicalResult;
|
||||
class Operation;
|
||||
|
||||
/// Replaces parallel affine.for op with 1-d affine.parallel op.
|
||||
/// mlir::isLoopParallel detect the parallel affine.for ops.
|
||||
|
@ -31,6 +34,15 @@ void affineParallelize(AffineForOp forOp);
|
|||
/// significant code expansion in some cases.
|
||||
LogicalResult hoistAffineIfOp(AffineIfOp ifOp, bool *folded = nullptr);
|
||||
|
||||
/// Vectorizes affine loops in 'loops' using the n-D vectorization factors in
|
||||
/// 'vectorSizes'. By default, each vectorization factor is applied
|
||||
/// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can
|
||||
/// be optionally used to provide a different loop vectorization order.
|
||||
void vectorizeAffineLoops(
|
||||
Operation *parentOp,
|
||||
llvm::DenseSet<Operation *, DenseMapInfo<Operation *>> &loops,
|
||||
ArrayRef<int64_t> vectorSizes, ArrayRef<int64_t> fastestVaryingPattern);
|
||||
|
||||
} // namespace mlir
|
||||
|
||||
#endif // MLIR_DIALECT_AFFINE_UTILS_H
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include "mlir/Analysis/Utils.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/Affine/Passes.h"
|
||||
#include "mlir/Dialect/Affine/Utils.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/Dialect/Vector/VectorOps.h"
|
||||
#include "mlir/Dialect/Vector/VectorUtils.h"
|
||||
|
@ -1198,25 +1199,38 @@ void Vectorize::runOnFunction() {
|
|||
return signalPassFailure();
|
||||
}
|
||||
|
||||
// Thread-safe RAII local context, BumpPtrAllocator freed on exit.
|
||||
NestedPatternContext mlContext;
|
||||
|
||||
DenseSet<Operation *> parallelLoops;
|
||||
f.walk([¶llelLoops](AffineForOp loop) {
|
||||
if (isLoopParallel(loop))
|
||||
parallelLoops.insert(loop);
|
||||
});
|
||||
|
||||
vectorizeAffineLoops(f, parallelLoops, vectorSizes, fastestVaryingPattern);
|
||||
}
|
||||
|
||||
namespace mlir {
|
||||
|
||||
/// Vectorizes affine loops in 'loops' using the n-D vectorization factors in
|
||||
/// 'vectorSizes'. By default, each vectorization factor is applied
|
||||
/// inner-to-outer to the loops of each loop nest. 'fastestVaryingPattern' can
|
||||
/// be optionally used to provide a different loop vectorization order.
|
||||
void vectorizeAffineLoops(Operation *parentOp, DenseSet<Operation *> &loops,
|
||||
ArrayRef<int64_t> vectorSizes,
|
||||
ArrayRef<int64_t> fastestVaryingPattern) {
|
||||
// Thread-safe RAII local context, BumpPtrAllocator freed on exit.
|
||||
NestedPatternContext mlContext;
|
||||
|
||||
for (auto &pat :
|
||||
makePatterns(parallelLoops, vectorSizes.size(), fastestVaryingPattern)) {
|
||||
makePatterns(loops, vectorSizes.size(), fastestVaryingPattern)) {
|
||||
LLVM_DEBUG(dbgs() << "\n******************************************");
|
||||
LLVM_DEBUG(dbgs() << "\n******************************************");
|
||||
LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on Function\n");
|
||||
LLVM_DEBUG(f.print(dbgs()));
|
||||
LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on parent op\n");
|
||||
LLVM_DEBUG(parentOp->print(dbgs()));
|
||||
|
||||
unsigned patternDepth = pat.getDepth();
|
||||
|
||||
SmallVector<NestedMatch, 8> matches;
|
||||
pat.match(f, &matches);
|
||||
pat.match(parentOp, &matches);
|
||||
// Iterate over all the top-level matches and vectorize eagerly.
|
||||
// This automatically prunes intersecting matches.
|
||||
for (auto m : matches) {
|
||||
|
@ -1239,9 +1253,11 @@ void Vectorize::runOnFunction() {
|
|||
}
|
||||
|
||||
std::unique_ptr<OperationPass<FuncOp>>
|
||||
mlir::createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) {
|
||||
createSuperVectorizePass(ArrayRef<int64_t> virtualVectorSize) {
|
||||
return std::make_unique<Vectorize>(virtualVectorSize);
|
||||
}
|
||||
std::unique_ptr<OperationPass<FuncOp>> mlir::createSuperVectorizePass() {
|
||||
std::unique_ptr<OperationPass<FuncOp>> createSuperVectorizePass() {
|
||||
return std::make_unique<Vectorize>();
|
||||
}
|
||||
|
||||
} // namespace mlir
|
||||
|
|
Loading…
Reference in New Issue