Check in a bunch of minor fixes, plus a whole lot of #if 0'd out code, which will hopefully be enabled in the near future

This does not make any functionality changes

llvm-svn: 8355
This commit is contained in:
Chris Lattner 2003-09-05 02:21:39 +00:00
parent 77ee82d9dc
commit 3f695ff02e
1 changed files with 163 additions and 25 deletions

View File

@ -1,4 +1,4 @@
//===-- Type.cpp - Implement the Type class ----------------------*- C++ -*--=//
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
@ -451,7 +451,7 @@ static bool TypesEqual(const Type *Ty, const Type *Ty2,
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that method types can be varargs or not. Consider this now.
// and that function types can be varargs or not. Consider this now.
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
if (ATy->getNumElements() != cast<ArrayType>(Ty2)->getNumElements())
return false;
@ -483,13 +483,12 @@ class TypeMap : public AbstractTypeUser {
typedef std::map<ValType, PATypeHandle> MapTy;
MapTy Map;
public:
typedef typename MapTy::iterator iterator;
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
typename std::map<ValType, PATypeHandle>::iterator I
= Map.find(V);
// TODO: FIXME: When Types are not CONST.
return (I != Map.end()) ? (TypeClass*)I->second.get() : 0;
iterator I = Map.find(V);
return I != Map.end() ? (TypeClass*)I->second.get() : 0;
}
inline void add(const ValType &V, TypeClass *T) {
@ -497,13 +496,26 @@ public:
print("add");
}
iterator getEntryForType(TypeClass *Ty) {
iterator I = Map.find(ValType::get(Ty));
if (I == Map.end()) print("ERROR!");
assert(I != Map.end() && "Didn't find type entry!");
return I;
}
// containsEquivalent - Return true if the typemap contains a type that is
// structurally equivalent to the specified type.
//
inline const TypeClass *containsEquivalent(const TypeClass *Ty) {
for (typename MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second.get() != Ty && TypesEqual(Ty, I->second.get()))
return (TypeClass*)I->second.get();
inline TypeClass *containsEquivalent(TypeClass *Ty) { //iterator TyIt) {
//const TypeClass *Ty = (const TypeClass*)TyIt->second.get();
for (iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second.get() != Ty && TypesEqual(Ty, I->second.get())) {
TypeClass *New = (TypeClass*)I->second.get();
#if 0
Map.erase(TyIt); // The old entry is now dead!
#endif
return New;
}
return 0;
}
@ -518,8 +530,8 @@ public:
<< *OldTy << " replacement == " << (void*)NewTy
<< ", " << *NewTy << "\n";
#endif
for (typename MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second == OldTy) {
for (iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second.get() == OldTy) {
// Check to see if the type just became concrete. If so, remove self
// from user list.
I->second.removeUserFromConcrete();
@ -528,18 +540,24 @@ public:
}
void remove(const ValType &OldVal) {
typename MapTy::iterator I = Map.find(OldVal);
iterator I = Map.find(OldVal);
assert(I != Map.end() && "TypeMap::remove, element not found!");
Map.erase(I);
}
void remove(iterator I) {
assert(I != Map.end() && "Cannot remove invalid iterator pointer!");
Map.erase(I);
}
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (MapTy::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I)
std::cerr << " " << (++i) << ". " << I->second << " "
<< *I->second << "\n";
for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
I != E; ++I)
std::cerr << " " << (++i) << ". " << (void*)I->second.get() << " "
<< *I->second.get() << "\n";
#endif
}
@ -622,6 +640,8 @@ public:
ArgTypes.push_back(PATypeHandle(MVT.ArgTypes[i], this));
}
static FunctionValType get(const FunctionType *FT);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (RetTy == OldType) RetTy = NewType;
@ -648,6 +668,17 @@ public:
// Define the actual map itself now...
static TypeMap<FunctionValType, FunctionType> FunctionTypes;
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getParamTypes().size());
for (unsigned i = 0, e = FT->getParamTypes().size(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg(),
FunctionTypes);
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
@ -664,6 +695,17 @@ FunctionType *FunctionType::get(const Type *ReturnType,
return MT;
}
void FunctionType::dropAllTypeUses(bool inMap) {
#if 0
//if (inMap) FunctionTypes.remove(FunctionTypes.getEntryForType(this));
// Drop all uses of other types, which might be recursive.
ResultType = Type::VoidTy;
ParamTys.clear();
#endif
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
@ -681,6 +723,9 @@ public:
: ValTypeBase<ArrayValType, ArrayType>(AVT), ValTy(AVT.ValTy, this),
Size(AVT.Size) {}
static ArrayValType get(const ArrayType *AT);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
@ -701,6 +746,11 @@ public:
static TypeMap<ArrayValType, ArrayType> ArrayTypes;
ArrayValType ArrayValType::get(const ArrayType *AT) {
return ArrayValType(AT->getElementType(), AT->getNumElements(), ArrayTypes);
}
ArrayType *ArrayType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get array of null types!");
@ -717,6 +767,16 @@ ArrayType *ArrayType::get(const Type *ElementType, unsigned NumElements) {
return AT;
}
void ArrayType::dropAllTypeUses(bool inMap) {
#if 0
//if (inMap) ArrayTypes.remove(ArrayTypes.getEntryForType(this));
ElementType = Type::IntTy;
#endif
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
@ -744,6 +804,8 @@ public:
ElTypes.push_back(PATypeHandle(SVT.ElTypes[i], this));
}
static StructValType get(const StructType *ST);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
for (unsigned i = 0; i < ElTypes.size(); ++i)
@ -763,6 +825,17 @@ public:
static TypeMap<StructValType, StructType> StructTypes;
StructValType StructValType::get(const StructType *ST) {
std::vector<const Type *> ElTypes;
ElTypes.reserve(ST->getElementTypes().size());
for (unsigned i = 0, e = ST->getElementTypes().size(); i != e; ++i)
ElTypes.push_back(ST->getElementTypes()[i]);
return StructValType(ElTypes, StructTypes);
}
StructType *StructType::get(const std::vector<const Type*> &ETypes) {
StructValType STV(ETypes, StructTypes);
StructType *ST = StructTypes.get(STV);
@ -777,6 +850,15 @@ StructType *StructType::get(const std::vector<const Type*> &ETypes) {
return ST;
}
void StructType::dropAllTypeUses(bool inMap) {
#if 0
//if (inMap) StructTypes.remove(StructTypes.getEntryForType(this));
ETypes.clear();
#endif
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
@ -795,6 +877,8 @@ public:
PointerValType(const PointerValType &PVT)
: ValTypeBase<PointerValType, PointerType>(PVT), ValTy(PVT.ValTy, this) {}
static PointerValType get(const PointerType *PT);
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
@ -814,6 +898,11 @@ public:
static TypeMap<PointerValType, PointerType> PointerTypes;
PointerValType PointerValType::get(const PointerType *PT) {
return PointerValType(PT->getElementType(), PointerTypes);
}
PointerType *PointerType::get(const Type *ValueType) {
assert(ValueType && "Can't get a pointer to <null> type!");
PointerValType PVT(ValueType, PointerTypes);
@ -830,6 +919,13 @@ PointerType *PointerType::get(const Type *ValueType) {
return PT;
}
void PointerType::dropAllTypeUses(bool inMap) {
#if 0
//if (inMap) PointerTypes.remove(PointerTypes.getEntryForType(this));
ElementType = Type::IntTy;
#endif
}
void debug_type_tables() {
FunctionTypes.dump();
ArrayTypes.dump();
@ -891,12 +987,12 @@ void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const {
}
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete
// type NewType and for 'this' to be deleted.
// refineAbstractTypeToInternal - This function is used to when it is discovered
// that the 'this' abstract type is actually equivalent to the NewType
// specified. This causes all users of 'this' to switch to reference the more
// concrete type NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
void DerivedType::refineAbstractTypeToInternal(const Type *NewType, bool inMap){
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
@ -924,6 +1020,14 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
//
addAbstractTypeUser(this);
#if 0
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses(inMap);
#endif
// Count the number of self uses. Stop looping when sizeof(list) == NSU.
unsigned NumSelfUses = 0;
@ -972,6 +1076,10 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
//
assert((NewTy == this || AbstractTypeUsers.back() == this) &&
"Only self uses should be left!");
#if 0
assert(AbstractTypeUsers.size() == 1 && "This type should get deleted!");
#endif
removeAbstractTypeUser(this);
}
@ -1054,6 +1162,14 @@ void FunctionType::refineAbstractType(const DerivedType *OldType,
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
// Look up our current type map entry..
#if 0
TypeMap<FunctionValType, FunctionType>::iterator TMI =
FunctionTypes.getEntryForType(this);
assert(TMI->second == this);
#endif
// Find the type element we are refining...
if (ResultType == OldType) {
ResultType.removeUserFromConcrete();
@ -1066,7 +1182,7 @@ void FunctionType::refineAbstractType(const DerivedType *OldType,
}
if (const FunctionType *MT = FunctionTypes.containsEquivalent(this)) {
refineAbstractTypeTo(MT); // Different type altogether...
refineAbstractTypeToInternal(MT, false); // Different type altogether...
} else {
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!
@ -1088,12 +1204,19 @@ void ArrayType::refineAbstractType(const DerivedType *OldType,
<< *NewType << "])\n";
#endif
#if 0
// Look up our current type map entry..
TypeMap<ArrayValType, ArrayType>::iterator TMI =
ArrayTypes.getEntryForType(this);
assert(TMI->second == this);
#endif
assert(getElementType() == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
if (const ArrayType *AT = ArrayTypes.containsEquivalent(this)) {
refineAbstractTypeTo(AT); // Different type altogether...
refineAbstractTypeToInternal(AT, false); // Different type altogether...
} else {
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!
@ -1114,6 +1237,14 @@ void StructType::refineAbstractType(const DerivedType *OldType,
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
#if 0
// Look up our current type map entry..
TypeMap<StructValType, StructType>::iterator TMI =
StructTypes.getEntryForType(this);
assert(TMI->second == this);
#endif
for (int i = ETypes.size()-1; i >= 0; --i)
if (ETypes[i] == OldType) {
ETypes[i].removeUserFromConcrete();
@ -1123,7 +1254,7 @@ void StructType::refineAbstractType(const DerivedType *OldType,
}
if (const StructType *ST = StructTypes.containsEquivalent(this)) {
refineAbstractTypeTo(ST); // Different type altogether...
refineAbstractTypeToInternal(ST, false); // Different type altogether...
} else {
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!
@ -1144,12 +1275,19 @@ void PointerType::refineAbstractType(const DerivedType *OldType,
<< *NewType << "])\n";
#endif
#if 0
// Look up our current type map entry..
TypeMap<PointerValType, PointerType>::iterator TMI =
PointerTypes.getEntryForType(this);
assert(TMI->second == this);
#endif
assert(ElementType == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
if (const PointerType *PT = PointerTypes.containsEquivalent(this)) {
refineAbstractTypeTo(PT); // Different type altogether...
refineAbstractTypeToInternal(PT, false); // Different type altogether...
} else {
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!