Implement an scf.for range folding optimization pass.

In cases where arithmetic (addi/muli) ops are performed on an scf.for loops induction variable with a single use, we can fold those ops directly into the scf.for loop.

For example, in the following code:

```
scf.for %i = %c0 to %arg1 step %c1 {
  %0 = addi %arg2, %i : index
  %1 = muli %0, %c4 : index
  %2 = memref.load %arg0[%1] : memref<?xi32>
  %3 = muli %2, %2 : i32
  memref.store %3, %arg0[%1] : memref<?xi32>
}
```

we can lift `%0` up into the scf.for loop range, as it is the only user of %i:

```
%lb = addi %arg2, %c0 : index
%ub = addi %arg2, %i : index
scf.for %i = %lb to %ub step %c1 {
  %1 = muli %0, %c4 : index
  %2 = memref.load %arg0[%1] : memref<?xi32>
  %3 = muli %2, %2 : i32
  memref.store %3, %arg0[%1] : memref<?xi32>
}
```

Reviewed By: mehdi_amini, ftynse, Anthony

Differential Revision: https://reviews.llvm.org/D104289
This commit is contained in:
Anthony Canino 2021-06-24 01:00:46 +00:00 committed by Mehdi Amini
parent ae266e743c
commit 3f429e82d3
5 changed files with 225 additions and 0 deletions

View File

@ -35,6 +35,10 @@ std::unique_ptr<Pass> createParallelLoopSpecializationPass();
std::unique_ptr<Pass>
createParallelLoopTilingPass(llvm::ArrayRef<int64_t> tileSize = {});
/// Creates a pass which folds arith ops on induction variable into
/// loop range.
std::unique_ptr<Pass> createForLoopRangeFoldingPass();
//===----------------------------------------------------------------------===//
// Registration
//===----------------------------------------------------------------------===//

View File

@ -45,4 +45,10 @@ def SCFParallelLoopTiling : FunctionPass<"parallel-loop-tiling"> {
let dependentDialects = ["AffineDialect"];
}
def SCFForLoopRangeFolding
: Pass<"for-loop-range-folding"> {
let summary = "Fold add/mul ops into loop range";
let constructor = "mlir::createForLoopRangeFoldingPass()";
}
#endif // MLIR_DIALECT_SCF_PASSES

View File

@ -1,5 +1,6 @@
add_mlir_dialect_library(MLIRSCFTransforms
Bufferize.cpp
LoopRangeFolding.cpp
LoopSpecialization.cpp
ParallelLoopFusion.cpp
ParallelLoopTiling.cpp

View File

@ -0,0 +1,86 @@
//===- LoopRangeFolding.cpp - Code to perform loop range folding-----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop range folding.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/SCF/Passes.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SCF/Transforms.h"
#include "mlir/Dialect/SCF/Utils.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
using namespace mlir;
using namespace mlir::scf;
namespace {
struct ForLoopRangeFolding
: public SCFForLoopRangeFoldingBase<ForLoopRangeFolding> {
void runOnOperation() override;
};
} // namespace
void ForLoopRangeFolding::runOnOperation() {
getOperation()->walk([&](ForOp op) {
Value indVar = op.getInductionVar();
auto canBeFolded = [&](Value value) {
return op.isDefinedOutsideOfLoop(value) || value == indVar;
};
// Fold until a fixed point is reached
while (true) {
// If the induction variable is used more than once, we can't fold its
// arith ops into the loop range
if (!indVar.hasOneUse())
break;
Operation *user = *indVar.getUsers().begin();
if (!isa<AddIOp, MulIOp>(user))
break;
if (!llvm::all_of(user->getOperands(), canBeFolded))
break;
OpBuilder b(op);
BlockAndValueMapping lbMap;
lbMap.map(indVar, op.lowerBound());
BlockAndValueMapping ubMap;
ubMap.map(indVar, op.upperBound());
BlockAndValueMapping stepMap;
stepMap.map(indVar, op.step());
if (isa<AddIOp>(user)) {
Operation *lbFold = b.clone(*user, lbMap);
Operation *ubFold = b.clone(*user, ubMap);
op.setLowerBound(lbFold->getResult(0));
op.setUpperBound(ubFold->getResult(0));
} else if (isa<MulIOp>(user)) {
Operation *ubFold = b.clone(*user, ubMap);
Operation *stepFold = b.clone(*user, stepMap);
op.setUpperBound(ubFold->getResult(0));
op.setStep(stepFold->getResult(0));
}
ValueRange wrapIndvar(indVar);
user->replaceAllUsesWith(wrapIndvar);
user->erase();
}
});
}
std::unique_ptr<Pass> mlir::createForLoopRangeFoldingPass() {
return std::make_unique<ForLoopRangeFolding>();
}

View File

@ -0,0 +1,128 @@
// RUN: mlir-opt %s -pass-pipeline='func(for-loop-range-folding)' -split-input-file | FileCheck %s
func @fold_one_loop(%arg0: memref<?xi32>, %arg1: index, %arg2: index) {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c4 = constant 4 : index
scf.for %i = %c0 to %arg1 step %c1 {
%0 = addi %arg2, %i : index
%1 = muli %0, %c4 : index
%2 = memref.load %arg0[%1] : memref<?xi32>
%3 = muli %2, %2 : i32
memref.store %3, %arg0[%1] : memref<?xi32>
}
return
}
// CHECK-LABEL: func @fold_one_loop
// CHECK-SAME: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[C4:.*]] = constant 4 : index
// CHECK: %[[I0:.*]] = addi %[[ARG2]], %[[C0]] : index
// CHECK: %[[I1:.*]] = addi %[[ARG2]], %[[ARG1]] : index
// CHECK: %[[I2:.*]] = muli %[[I1]], %[[C4]] : index
// CHECK: %[[I3:.*]] = muli %[[C1]], %[[C4]] : index
// CHECK: scf.for %[[I:.*]] = %[[I0]] to %[[I2]] step %[[I3]] {
// CHECK: %[[I4:.*]] = memref.load %[[ARG0]]{{\[}}%[[I]]
// CHECK: %[[I5:.*]] = muli %[[I4]], %[[I4]] : i32
// CHECK: memref.store %[[I5]], %[[ARG0]]{{\[}}%[[I]]
func @fold_one_loop2(%arg0: memref<?xi32>, %arg1: index, %arg2: index) {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c4 = constant 4 : index
%c10 = constant 10 : index
scf.for %j = %c0 to %c10 step %c1 {
scf.for %i = %c0 to %arg1 step %c1 {
%0 = addi %arg2, %i : index
%1 = muli %0, %c4 : index
%2 = memref.load %arg0[%1] : memref<?xi32>
%3 = muli %2, %2 : i32
memref.store %3, %arg0[%1] : memref<?xi32>
}
}
return
}
// CHECK-LABEL: func @fold_one_loop2
// CHECK-SAME: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[C4:.*]] = constant 4 : index
// CHECK: %[[C10:.*]] = constant 10 : index
// CHECK: scf.for %[[J:.*]] = %[[C0]] to %[[C10]] step %[[C1]] {
// CHECK: %[[I0:.*]] = addi %[[ARG2]], %[[C0]] : index
// CHECK: %[[I1:.*]] = addi %[[ARG2]], %[[ARG1]] : index
// CHECK: %[[I2:.*]] = muli %[[I1]], %[[C4]] : index
// CHECK: %[[I3:.*]] = muli %[[C1]], %[[C4]] : index
// CHECK: scf.for %[[I:.*]] = %[[I0]] to %[[I2]] step %[[I3]] {
// CHECK: %[[I4:.*]] = memref.load %[[ARG0]]{{\[}}%[[I]]
// CHECK: %[[I5:.*]] = muli %[[I4]], %[[I4]] : i32
// CHECK: memref.store %[[I5]], %[[ARG0]]{{\[}}%[[I]]
func @fold_two_loops(%arg0: memref<?xi32>, %arg1: index, %arg2: index) {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c4 = constant 4 : index
%c10 = constant 10 : index
scf.for %j = %c0 to %c10 step %c1 {
scf.for %i = %j to %arg1 step %c1 {
%0 = addi %arg2, %i : index
%1 = muli %0, %c4 : index
%2 = memref.load %arg0[%1] : memref<?xi32>
%3 = muli %2, %2 : i32
memref.store %3, %arg0[%1] : memref<?xi32>
}
}
return
}
// CHECK-LABEL: func @fold_two_loops
// CHECK-SAME: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[C4:.*]] = constant 4 : index
// CHECK: %[[C10:.*]] = constant 10 : index
// CHECK: %[[I0:.*]] = addi %[[ARG2]], %[[C0]] : index
// CHECK: %[[I1:.*]] = addi %[[ARG2]], %[[C10]] : index
// CHECK: scf.for %[[J:.*]] = %[[I0]] to %[[I1]] step %[[C1]] {
// CHECK: %[[I1:.*]] = addi %[[ARG2]], %[[ARG1]] : index
// CHECK: %[[I2:.*]] = muli %[[I1]], %[[C4]] : index
// CHECK: %[[I3:.*]] = muli %[[C1]], %[[C4]] : index
// CHECK: scf.for %[[I:.*]] = %[[J]] to %[[I2]] step %[[I3]] {
// CHECK: %[[I4:.*]] = memref.load %[[ARG0]]{{\[}}%[[I]]
// CHECK: %[[I5:.*]] = muli %[[I4]], %[[I4]] : i32
// CHECK: memref.store %[[I5]], %[[ARG0]]{{\[}}%[[I]]
// If an instruction's operands are not defined outside the loop, we cannot
// perform the optimization, as is the case with the muli below. (If paired
// with loop invariant code motion we can continue.)
func @fold_only_first_add(%arg0: memref<?xi32>, %arg1: index, %arg2: index) {
%c0 = constant 0 : index
%c1 = constant 1 : index
%c4 = constant 4 : index
scf.for %i = %c0 to %arg1 step %c1 {
%0 = addi %arg2, %i : index
%1 = addi %arg2, %c4 : index
%2 = muli %0, %1 : index
%3 = memref.load %arg0[%2] : memref<?xi32>
%4 = muli %3, %3 : i32
memref.store %4, %arg0[%2] : memref<?xi32>
}
return
}
// CHECK-LABEL: func @fold_only_first_add
// CHECK-SAME: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}
// CHECK: %[[C0:.*]] = constant 0 : index
// CHECK: %[[C1:.*]] = constant 1 : index
// CHECK: %[[C4:.*]] = constant 4 : index
// CHECK: %[[I0:.*]] = addi %[[ARG2]], %[[C0]] : index
// CHECK: %[[I1:.*]] = addi %[[ARG2]], %[[ARG1]] : index
// CHECK: scf.for %[[I:.*]] = %[[I0]] to %[[I1]] step %[[C1]] {
// CHECK: %[[I2:.*]] = addi %[[ARG2]], %[[C4]] : index
// CHECK: %[[I3:.*]] = muli %[[I]], %[[I2]] : index
// CHECK: %[[I4:.*]] = memref.load %[[ARG0]]{{\[}}%[[I3]]
// CHECK: %[[I5:.*]] = muli %[[I4]], %[[I4]] : i32
// CHECK: memref.store %[[I5]], %[[ARG0]]{{\[}}%[[I3]]