[pseudo] Turn glrReduce into a class, reuse storage across calls.

This is a ~5% speedup, we no longer have to allocate the priority queues and
other collections for each reduction step where we use them.

It's also IMO easier to understand the structure of a class with methods vs a
function with nested lambdas.

Differential Revision: https://reviews.llvm.org/D128301
This commit is contained in:
Sam McCall 2022-06-21 22:19:06 +02:00
parent 1cc9792281
commit 3e610f2cdc
1 changed files with 162 additions and 134 deletions

View File

@ -15,7 +15,6 @@
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <memory>
@ -37,67 +36,6 @@ llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const GSS::Node &N) {
return OS;
}
const ForestNode &glrParse(const TokenStream &Tokens, const ParseParams &Params,
SymbolID StartSymbol) {
assert(isNonterminal(StartSymbol) && "Start symbol must be a nonterminal");
llvm::ArrayRef<ForestNode> Terminals = Params.Forest.createTerminals(Tokens);
auto &G = Params.G;
(void)G;
auto &GSS = Params.GSStack;
StateID StartState = Params.Table.getStartState(StartSymbol);
// Heads correspond to the parse of tokens [0, I), NextHeads to [0, I+1).
std::vector<const GSS::Node *> Heads = {GSS.addNode(/*State=*/StartState,
/*ForestNode=*/nullptr,
{})};
std::vector<const GSS::Node *> NextHeads;
auto MaybeGC = [&, Roots(std::vector<const GSS::Node *>{}), I(0u)]() mutable {
assert(NextHeads.empty() && "Running GC at the wrong time!");
if (++I != 20) // Run periodically to balance CPU and memory usage.
return;
I = 0;
// We need to copy the list: Roots is consumed by the GC.
Roots = Heads;
GSS.gc(std::move(Roots));
};
// Each iteration fully processes a single token.
for (unsigned I = 0; I < Terminals.size(); ++I) {
LLVM_DEBUG(llvm::dbgs() << llvm::formatv(
"Next token {0} (id={1})\n",
G.symbolName(Terminals[I].symbol()), Terminals[I].symbol()));
// Consume the token.
glrShift(Heads, Terminals[I], Params, NextHeads);
// Form nonterminals containing the token we just consumed.
SymbolID Lookahead = I + 1 == Terminals.size() ? tokenSymbol(tok::eof)
: Terminals[I + 1].symbol();
glrReduce(NextHeads, Lookahead, Params);
// Prepare for the next token.
std::swap(Heads, NextHeads);
NextHeads.clear();
MaybeGC();
}
LLVM_DEBUG(llvm::dbgs() << llvm::formatv("Reached eof\n"));
StateID AcceptState = Params.Table.getGoToState(StartState, StartSymbol);
const ForestNode *Result = nullptr;
for (const auto *Head : Heads) {
if (Head->State == AcceptState) {
assert(Head->Payload->symbol() == StartSymbol);
assert(Result == nullptr && "multiple results!");
Result = Head->Payload;
}
}
if (Result)
return *Result;
// We failed to parse the input, returning an opaque forest node for recovery.
//
// FIXME: We will need to invoke our generic error-recovery handlers when we
// reach EOF without reaching accept state, and involving the eof
// token in the above main for-loopmay be the best way to reuse the code).
return Params.Forest.createOpaque(StartSymbol, /*Token::Index=*/0);
}
// Apply all pending shift actions.
// In theory, LR parsing doesn't have shift/shift conflicts on a single head.
// But we may have multiple active heads, and each head has a shift action.
@ -158,7 +96,6 @@ template <typename T> void sortAndUnique(std::vector<T> &Vec) {
llvm::sort(Vec);
Vec.erase(std::unique(Vec.begin(), Vec.end()), Vec.end());
}
} // namespace
// Perform reduces until no more are possible.
//
@ -202,9 +139,12 @@ template <typename T> void sortAndUnique(std::vector<T> &Vec) {
// After reducing 3 by `pointer := class-name STAR` and
// 2 by`enum-name := class-name STAR`:
// 0--5(pointer) // 5 is goto(0, pointer)
void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
const ParseParams &Params) {
assert(isToken(Lookahead));
//
// (This is a functor rather than a function to allow it to reuse scratch
// storage across calls).
class GLRReduce {
const ParseParams &Params;
// There are two interacting complications:
// 1. Performing one reduce can unlock new reduces on the newly-created head.
// 2a. The ambiguous ForestNodes must be complete (have all sequence nodes).
@ -260,57 +200,37 @@ void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
const GSS::Node* Base = nullptr;
Sequence Seq;
};
KeyedQueue<Family, PushSpec> Sequences;
Sequence TempSequence;
KeyedQueue<Family, PushSpec> Sequences; // FIXME: rename => PendingPushes?
// We treat Heads as a queue of Pop operations still to be performed.
// NextPopHead is our position within it.
unsigned NextPopHead = 0;
// In general we split a reduce into a pop/push, so concurrently-available
// reductions can run in the correct order. The data structures are expensive.
//
// When only one reduction is possible at a time, we can skip this:
// we pop and immediately push, as an LR parser (as opposed to GLR) would.
// This is valid whenever there's only one concurrent PushSpec.
//
// This function handles a trivial but common subset of these cases:
// - there must be no pending pushes, and only one poppable head
// - the head must have only one reduction rule
// - the reduction path must be a straight line (no multiple parents)
// (Roughly this means there's no local ambiguity, so the LR algorithm works).
auto PopAndPushTrivial = [&]() -> bool {
if (!Sequences.empty() || Heads.size() != NextPopHead + 1)
return false;
const GSS::Node *Head = Heads.back();
llvm::Optional<RuleID> RID;
for (auto &A : Params.Table.getActions(Head->State, Lookahead)) {
if (A.kind() != LRTable::Action::Reduce)
continue;
if (RID.hasValue())
return false;
RID = A.getReduceRule();
// PoppedHeads is our position within it.
std::vector<const GSS::Node *> *Heads;
unsigned NextPopHead;
SymbolID Lookahead;
Sequence TempSequence;
public:
GLRReduce(const ParseParams &Params) : Params(Params) {}
void operator()(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead) {
assert(isToken(Lookahead));
NextPopHead = 0;
this->Heads = &Heads;
this->Lookahead = Lookahead;
assert(Sequences.empty());
popPending();
while (!Sequences.empty()) {
pushNext();
popPending();
}
if (!RID.hasValue())
return false;
const auto &Rule = Params.G.lookupRule(*RID);
const GSS::Node *Base = Head;
TempSequence.resize_for_overwrite(Rule.Size);
for (unsigned I = 0; I < Rule.Size; ++I) {
if (Base->parents().size() != 1)
return false;
TempSequence[Rule.Size - 1 - I] = Base->Payload;
Base = Base->parents().front();
}
const ForestNode *Parsed =
&Params.Forest.createSequence(Rule.Target, *RID, TempSequence);
StateID NextState = Params.Table.getGoToState(Base->State, Rule.Target);
Heads.push_back(Params.GSStack.addNode(NextState, Parsed, {Base}));
return true;
};
// Pop walks up the parent chain(s) for a reduction from Head by to Rule.
}
private:
// pop walks up the parent chain(s) for a reduction from Head by to Rule.
// Once we reach the end, record the bases and sequences.
auto Pop = [&](const GSS::Node *Head, RuleID RID) {
void pop(const GSS::Node *Head, RuleID RID) {
LLVM_DEBUG(llvm::dbgs() << " Pop " << Params.G.dumpRule(RID) << "\n");
const auto &Rule = Params.G.lookupRule(RID);
Family F{/*Start=*/0, /*Symbol=*/Rule.Target, /*Rule=*/RID};
@ -327,33 +247,33 @@ void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
DFS(Parent, I + 1, DFS);
};
DFS(Head, 0, DFS);
};
auto PopPending = [&] {
for (; NextPopHead < Heads.size(); ++NextPopHead) {
}
// popPending pops every available reduction.
void popPending() {
for (; NextPopHead < Heads->size(); ++NextPopHead) {
// In trivial cases, we perform the complete reduce here!
if (PopAndPushTrivial())
if (popAndPushTrivial())
continue;
for (const auto &A :
Params.Table.getActions(Heads[NextPopHead]->State, Lookahead)) {
Params.Table.getActions((*Heads)[NextPopHead]->State, Lookahead)) {
if (A.kind() != LRTable::Action::Reduce)
continue;
Pop(Heads[NextPopHead], A.getReduceRule());
pop((*Heads)[NextPopHead], A.getReduceRule());
}
}
};
}
// Storage reused by each call to pushNext.
std::vector<std::pair</*Goto*/ StateID, const GSS::Node *>> FamilyBases;
std::vector<std::pair<RuleID, Sequence>> FamilySequences;
std::vector<const GSS::Node *> Parents;
std::vector<const ForestNode *> SequenceNodes;
std::vector<const GSS::Node *> TempGSSNodes;
std::vector<const ForestNode *> TempForestNodes;
// Main reduction loop:
// - pop as much as we can
// - process one family at a time, forming a forest node
// - produces new GSS heads which may enable more pops
PopPending();
while (!Sequences.empty()) {
// Process one push family, forming a forest node.
// This produces new GSS heads which may enable more pops.
void pushNext() {
assert(!Sequences.empty());
Family F = Sequences.top().first;
LLVM_DEBUG(llvm::dbgs() << " Push " << Params.G.symbolName(F.Symbol)
@ -377,7 +297,6 @@ void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
} while (!Sequences.empty() && Sequences.top().first == F);
// Build a forest node for each unique sequence.
sortAndUnique(FamilySequences);
auto &SequenceNodes = TempForestNodes;
SequenceNodes.clear();
for (const auto &SequenceSpec : FamilySequences)
SequenceNodes.push_back(&Params.Forest.createSequence(
@ -395,7 +314,6 @@ void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
llvm::ArrayRef<decltype(FamilyBases)::value_type> BasesLeft = FamilyBases;
while (!BasesLeft.empty()) {
StateID NextState = BasesLeft.front().first;
auto &Parents = TempGSSNodes;
Parents.clear();
for (const auto &Base : BasesLeft) {
if (Base.first != NextState)
@ -403,11 +321,121 @@ void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
Parents.push_back(Base.second);
}
BasesLeft = BasesLeft.drop_front(Parents.size());
Heads.push_back(Params.GSStack.addNode(NextState, Parsed, Parents));
Heads->push_back(Params.GSStack.addNode(NextState, Parsed, Parents));
}
PopPending();
}
assert(Sequences.empty());
// In general we split a reduce into a pop/push, so concurrently-available
// reductions can run in the correct order. The data structures are expensive.
//
// When only one reduction is possible at a time, we can skip this:
// we pop and immediately push, as an LR parser (as opposed to GLR) would.
// This is valid whenever there's only one concurrent PushSpec.
//
// This function handles a trivial but common subset of these cases:
// - there must be no pending pushes, and only one poppable head
// - the head must have only one reduction rule
// - the reduction path must be a straight line (no multiple parents)
// (Roughly this means there's no local ambiguity, so the LR algorithm works).
bool popAndPushTrivial() {
if (!Sequences.empty() || Heads->size() != NextPopHead + 1)
return false;
const GSS::Node *Head = Heads->back();
llvm::Optional<RuleID> RID;
for (auto &A : Params.Table.getActions(Head->State, Lookahead)) {
if (A.kind() != LRTable::Action::Reduce)
continue;
if (RID.hasValue())
return false;
RID = A.getReduceRule();
}
if (!RID.hasValue())
return false;
const auto &Rule = Params.G.lookupRule(*RID);
const GSS::Node *Base = Head;
TempSequence.resize_for_overwrite(Rule.Size);
for (unsigned I = 0; I < Rule.Size; ++I) {
if (Base->parents().size() != 1)
return false;
TempSequence[Rule.Size - 1 - I] = Base->Payload;
Base = Base->parents().front();
}
const ForestNode *Parsed =
&Params.Forest.createSequence(Rule.Target, *RID, TempSequence);
StateID NextState = Params.Table.getGoToState(Base->State, Rule.Target);
Heads->push_back(Params.GSStack.addNode(NextState, Parsed, {Base}));
return true;
}
};
} // namespace
const ForestNode &glrParse(const TokenStream &Tokens, const ParseParams &Params,
SymbolID StartSymbol) {
GLRReduce Reduce(Params);
assert(isNonterminal(StartSymbol) && "Start symbol must be a nonterminal");
llvm::ArrayRef<ForestNode> Terminals = Params.Forest.createTerminals(Tokens);
auto &G = Params.G;
(void)G;
auto &GSS = Params.GSStack;
StateID StartState = Params.Table.getStartState(StartSymbol);
// Heads correspond to the parse of tokens [0, I), NextHeads to [0, I+1).
std::vector<const GSS::Node *> Heads = {GSS.addNode(/*State=*/StartState,
/*ForestNode=*/nullptr,
{})};
std::vector<const GSS::Node *> NextHeads;
auto MaybeGC = [&, Roots(std::vector<const GSS::Node *>{}), I(0u)]() mutable {
assert(NextHeads.empty() && "Running GC at the wrong time!");
if (++I != 20) // Run periodically to balance CPU and memory usage.
return;
I = 0;
// We need to copy the list: Roots is consumed by the GC.
Roots = Heads;
GSS.gc(std::move(Roots));
};
// Each iteration fully processes a single token.
for (unsigned I = 0; I < Terminals.size(); ++I) {
LLVM_DEBUG(llvm::dbgs() << llvm::formatv(
"Next token {0} (id={1})\n",
G.symbolName(Terminals[I].symbol()), Terminals[I].symbol()));
// Consume the token.
glrShift(Heads, Terminals[I], Params, NextHeads);
// Form nonterminals containing the token we just consumed.
SymbolID Lookahead = I + 1 == Terminals.size() ? tokenSymbol(tok::eof)
: Terminals[I + 1].symbol();
Reduce(NextHeads, Lookahead);
// Prepare for the next token.
std::swap(Heads, NextHeads);
NextHeads.clear();
MaybeGC();
}
LLVM_DEBUG(llvm::dbgs() << llvm::formatv("Reached eof\n"));
StateID AcceptState = Params.Table.getGoToState(StartState, StartSymbol);
const ForestNode *Result = nullptr;
for (const auto *Head : Heads) {
if (Head->State == AcceptState) {
assert(Head->Payload->symbol() == StartSymbol);
assert(Result == nullptr && "multiple results!");
Result = Head->Payload;
}
}
if (Result)
return *Result;
// We failed to parse the input, returning an opaque forest node for recovery.
//
// FIXME: We will need to invoke our generic error-recovery handlers when we
// reach EOF without reaching accept state, and involving the eof
// token in the above main for-loopmay be the best way to reuse the code).
return Params.Forest.createOpaque(StartSymbol, /*Token::Index=*/0);
}
void glrReduce(std::vector<const GSS::Node *> &Heads, SymbolID Lookahead,
const ParseParams &Params) {
// Create a new GLRReduce each time for tests, performance doesn't matter.
GLRReduce{Params}(Heads, Lookahead);
}
const GSS::Node *GSS::addNode(LRTable::StateID State, const ForestNode *Symbol,