forked from OSchip/llvm-project
Split the loop unroll mechanism logic out into a utility function.
Patch by Matthijs Kooijman! llvm-svn: 51083
This commit is contained in:
parent
17816b321f
commit
3dc2d92ebd
|
@ -418,6 +418,59 @@ public:
|
|||
return 0;
|
||||
}
|
||||
|
||||
/// getSmallConstantTripCount - Returns the trip count of this loop as a
|
||||
/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
|
||||
/// of not constant. Will also return 0 if the trip count is very large
|
||||
/// (>= 2^32)
|
||||
inline unsigned getSmallConstantTripCount() const {
|
||||
Value* TripCount = this->getTripCount();
|
||||
if (TripCount) {
|
||||
if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
|
||||
// Guard against huge trip counts.
|
||||
if (TripCountC->getValue().getActiveBits() <= 32) {
|
||||
return (unsigned)TripCountC->getZExtValue();
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
|
||||
/// trip count of this loop as a normal unsigned value, if possible. This
|
||||
/// means that the actual trip count is always a multiple of the returned
|
||||
/// value (don't forget the trip count could very well be zero as well!).
|
||||
///
|
||||
/// Returns 1 if the trip count is unknown or not guaranteed to be the
|
||||
/// multiple of a constant (which is also the case if the trip count is simply
|
||||
/// constant, use getSmallConstantTripCount for that case), Will also return 1
|
||||
/// if the trip count is very large (>= 2^32).
|
||||
inline unsigned getSmallConstantTripMultiple() const {
|
||||
Value* TripCount = this->getTripCount();
|
||||
// This will hold the ConstantInt result, if any
|
||||
ConstantInt *Result = NULL;
|
||||
if (TripCount) {
|
||||
// See if the trip count is constant itself
|
||||
Result = dyn_cast<ConstantInt>(TripCount);
|
||||
// if not, see if it is a multiplication
|
||||
if (!Result)
|
||||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
|
||||
switch (BO->getOpcode()) {
|
||||
case BinaryOperator::Mul:
|
||||
Result = dyn_cast<ConstantInt>(BO->getOperand(1));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Guard against huge trip counts.
|
||||
if (Result && Result->getValue().getActiveBits() <= 32) {
|
||||
return (unsigned)Result->getZExtValue();
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// isLCSSAForm - Return true if the Loop is in LCSSA form
|
||||
inline bool isLCSSAForm() const {
|
||||
// Sort the blocks vector so that we can use binary search to do quick
|
||||
|
|
|
@ -10,39 +10,19 @@
|
|||
// This pass implements a simple loop unroller. It works best when loops have
|
||||
// been canonicalized by the -indvars pass, allowing it to determine the trip
|
||||
// counts of loops easily.
|
||||
//
|
||||
// This pass will multi-block loops only if they contain no non-unrolled
|
||||
// subloops. The process of unrolling can produce extraneous basic blocks
|
||||
// linked with unconditional branches. This will be corrected in the future.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "loop-unroll"
|
||||
#include "llvm/IntrinsicInst.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Transforms/Utils/Cloning.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/IntrinsicInst.h"
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cstdio>
|
||||
using namespace llvm;
|
||||
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
||||
|
||||
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
|
||||
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
|
||||
using namespace llvm;
|
||||
|
||||
static cl::opt<unsigned>
|
||||
UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
|
||||
|
@ -54,7 +34,6 @@ UnrollCount("unroll-count", cl::init(0), cl::Hidden,
|
|||
|
||||
namespace {
|
||||
class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
|
||||
LoopInfo *LI; // The current loop information
|
||||
public:
|
||||
static char ID; // Pass ID, replacement for typeid
|
||||
LoopUnroll() : LoopPass((intptr_t)&ID) {}
|
||||
|
@ -65,8 +44,6 @@ namespace {
|
|||
static const unsigned NoThreshold = UINT_MAX;
|
||||
|
||||
bool runOnLoop(Loop *L, LPPassManager &LPM);
|
||||
bool unrollLoop(Loop *L, unsigned Count, unsigned Threshold);
|
||||
BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB);
|
||||
|
||||
/// This transformation requires natural loop information & requires that
|
||||
/// loop preheaders be inserted into the CFG...
|
||||
|
@ -121,136 +98,18 @@ static unsigned ApproximateLoopSize(const Loop *L) {
|
|||
return Size;
|
||||
}
|
||||
|
||||
// RemapInstruction - Convert the instruction operands from referencing the
|
||||
// current values into those specified by ValueMap.
|
||||
//
|
||||
static inline void RemapInstruction(Instruction *I,
|
||||
DenseMap<const Value *, Value*> &ValueMap) {
|
||||
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
|
||||
Value *Op = I->getOperand(op);
|
||||
DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
|
||||
if (It != ValueMap.end()) Op = It->second;
|
||||
I->setOperand(op, Op);
|
||||
}
|
||||
}
|
||||
|
||||
// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
|
||||
// only has one predecessor, and that predecessor only has one successor.
|
||||
// Returns the new combined block.
|
||||
BasicBlock *LoopUnroll::FoldBlockIntoPredecessor(BasicBlock *BB) {
|
||||
// Merge basic blocks into their predecessor if there is only one distinct
|
||||
// pred, and if there is only one distinct successor of the predecessor, and
|
||||
// if there are no PHI nodes.
|
||||
//
|
||||
BasicBlock *OnlyPred = BB->getSinglePredecessor();
|
||||
if (!OnlyPred) return 0;
|
||||
|
||||
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
|
||||
return 0;
|
||||
|
||||
DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
|
||||
|
||||
// Resolve any PHI nodes at the start of the block. They are all
|
||||
// guaranteed to have exactly one entry if they exist, unless there are
|
||||
// multiple duplicate (but guaranteed to be equal) entries for the
|
||||
// incoming edges. This occurs when there are multiple edges from
|
||||
// OnlyPred to OnlySucc.
|
||||
//
|
||||
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
||||
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
||||
BB->getInstList().pop_front(); // Delete the phi node...
|
||||
}
|
||||
|
||||
// Delete the unconditional branch from the predecessor...
|
||||
OnlyPred->getInstList().pop_back();
|
||||
|
||||
// Move all definitions in the successor to the predecessor...
|
||||
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
||||
|
||||
// Make all PHI nodes that referred to BB now refer to Pred as their
|
||||
// source...
|
||||
BB->replaceAllUsesWith(OnlyPred);
|
||||
|
||||
std::string OldName = BB->getName();
|
||||
|
||||
// Erase basic block from the function...
|
||||
LI->removeBlock(BB);
|
||||
BB->eraseFromParent();
|
||||
|
||||
// Inherit predecessor's name if it exists...
|
||||
if (!OldName.empty() && !OnlyPred->hasName())
|
||||
OnlyPred->setName(OldName);
|
||||
|
||||
return OnlyPred;
|
||||
}
|
||||
|
||||
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
LI = &getAnalysis<LoopInfo>();
|
||||
|
||||
// Unroll the loop.
|
||||
if (!unrollLoop(L, UnrollCount, UnrollThreshold))
|
||||
return false;
|
||||
|
||||
// Update the loop information for this loop.
|
||||
// If we completely unrolled the loop, remove it from the parent.
|
||||
if (L->getNumBackEdges() == 0)
|
||||
LPM.deleteLoopFromQueue(L);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Unroll the given loop by UnrollCount, or by a heuristically-determined
|
||||
/// value if Count is zero. If Threshold is not NoThreshold, it is a value
|
||||
/// to limit code size expansion. If the loop size would expand beyond the
|
||||
/// threshold value, unrolling is suppressed. The return value is true if
|
||||
/// any transformations are performed.
|
||||
///
|
||||
bool LoopUnroll::unrollLoop(Loop *L, unsigned Count, unsigned Threshold) {
|
||||
assert(L->isLCSSAForm());
|
||||
LoopInfo *LI = &getAnalysis<LoopInfo>();
|
||||
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *LatchBlock = L->getLoopLatch();
|
||||
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
||||
|
||||
DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
|
||||
<< "] Loop %" << Header->getName() << "\n";
|
||||
|
||||
if (!BI || BI->isUnconditional()) {
|
||||
// The loop-rotate pass can be helpful to avoid this in many cases.
|
||||
DOUT << " Can't unroll; loop not terminated by a conditional branch.\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Determine the trip count and/or trip multiple. A TripCount value of zero
|
||||
// is used to mean an unknown trip count. The TripMultiple value is the
|
||||
// greatest known integer multiple of the trip count.
|
||||
unsigned TripCount = 0;
|
||||
unsigned TripMultiple = 1;
|
||||
if (Value *TripCountValue = L->getTripCount()) {
|
||||
if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCountValue)) {
|
||||
// Guard against huge trip counts. This also guards against assertions in
|
||||
// APInt from the use of getZExtValue, below.
|
||||
if (TripCountC->getValue().getActiveBits() <= 32) {
|
||||
TripCount = (unsigned)TripCountC->getZExtValue();
|
||||
}
|
||||
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCountValue)) {
|
||||
switch (BO->getOpcode()) {
|
||||
case BinaryOperator::Mul:
|
||||
if (ConstantInt *MultipleC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
|
||||
if (MultipleC->getValue().getActiveBits() <= 32) {
|
||||
TripMultiple = (unsigned)MultipleC->getZExtValue();
|
||||
}
|
||||
}
|
||||
break;
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (TripCount != 0)
|
||||
DOUT << " Trip Count = " << TripCount << "\n";
|
||||
if (TripMultiple != 1)
|
||||
DOUT << " Trip Multiple = " << TripMultiple << "\n";
|
||||
|
||||
// Find trip count
|
||||
unsigned TripCount = L->getSmallConstantTripCount();
|
||||
unsigned Count = UnrollCount;
|
||||
|
||||
// Automatically select an unroll count.
|
||||
if (Count == 0) {
|
||||
// Conservative heuristic: if we know the trip count, see if we can
|
||||
|
@ -263,245 +122,21 @@ bool LoopUnroll::unrollLoop(Loop *L, unsigned Count, unsigned Threshold) {
|
|||
}
|
||||
}
|
||||
|
||||
// Effectively "DCE" unrolled iterations that are beyond the tripcount
|
||||
// and will never be executed.
|
||||
if (TripCount != 0 && Count > TripCount)
|
||||
Count = TripCount;
|
||||
|
||||
assert(Count > 0);
|
||||
assert(TripMultiple > 0);
|
||||
assert(TripCount == 0 || TripCount % TripMultiple == 0);
|
||||
|
||||
// Enforce the threshold.
|
||||
if (Threshold != NoThreshold) {
|
||||
if (UnrollThreshold != NoThreshold) {
|
||||
unsigned LoopSize = ApproximateLoopSize(L);
|
||||
DOUT << " Loop Size = " << LoopSize << "\n";
|
||||
uint64_t Size = (uint64_t)LoopSize*Count;
|
||||
if (TripCount != 1 && Size > Threshold) {
|
||||
if (TripCount != 1 && Size > UnrollThreshold) {
|
||||
DOUT << " TOO LARGE TO UNROLL: "
|
||||
<< Size << ">" << Threshold << "\n";
|
||||
<< Size << ">" << UnrollThreshold << "\n";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Are we eliminating the loop control altogether?
|
||||
bool CompletelyUnroll = Count == TripCount;
|
||||
// Unroll the loop.
|
||||
if (!UnrollLoop(L, Count, LI, &LPM))
|
||||
return false;
|
||||
|
||||
// If we know the trip count, we know the multiple...
|
||||
unsigned BreakoutTrip = 0;
|
||||
if (TripCount != 0) {
|
||||
BreakoutTrip = TripCount % Count;
|
||||
TripMultiple = 0;
|
||||
} else {
|
||||
// Figure out what multiple to use.
|
||||
BreakoutTrip = TripMultiple =
|
||||
(unsigned)GreatestCommonDivisor64(Count, TripMultiple);
|
||||
}
|
||||
|
||||
if (CompletelyUnroll) {
|
||||
DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
|
||||
<< " with trip count " << TripCount << "!\n";
|
||||
} else {
|
||||
DOUT << "UNROLLING loop %" << Header->getName()
|
||||
<< " by " << Count;
|
||||
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
|
||||
DOUT << " with a breakout at trip " << BreakoutTrip;
|
||||
} else if (TripMultiple != 1) {
|
||||
DOUT << " with " << TripMultiple << " trips per branch";
|
||||
}
|
||||
DOUT << "!\n";
|
||||
}
|
||||
|
||||
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
|
||||
|
||||
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
|
||||
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
|
||||
|
||||
// For the first iteration of the loop, we should use the precloned values for
|
||||
// PHI nodes. Insert associations now.
|
||||
typedef DenseMap<const Value*, Value*> ValueMapTy;
|
||||
ValueMapTy LastValueMap;
|
||||
std::vector<PHINode*> OrigPHINode;
|
||||
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
||||
PHINode *PN = cast<PHINode>(I);
|
||||
OrigPHINode.push_back(PN);
|
||||
if (Instruction *I =
|
||||
dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
|
||||
if (L->contains(I->getParent()))
|
||||
LastValueMap[I] = I;
|
||||
}
|
||||
|
||||
std::vector<BasicBlock*> Headers;
|
||||
std::vector<BasicBlock*> Latches;
|
||||
Headers.push_back(Header);
|
||||
Latches.push_back(LatchBlock);
|
||||
|
||||
for (unsigned It = 1; It != Count; ++It) {
|
||||
char SuffixBuffer[100];
|
||||
sprintf(SuffixBuffer, ".%d", It);
|
||||
|
||||
std::vector<BasicBlock*> NewBlocks;
|
||||
|
||||
for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
|
||||
E = LoopBlocks.end(); BB != E; ++BB) {
|
||||
ValueMapTy ValueMap;
|
||||
BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
|
||||
Header->getParent()->getBasicBlockList().push_back(New);
|
||||
|
||||
// Loop over all of the PHI nodes in the block, changing them to use the
|
||||
// incoming values from the previous block.
|
||||
if (*BB == Header)
|
||||
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
||||
PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
|
||||
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
|
||||
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
|
||||
if (It > 1 && L->contains(InValI->getParent()))
|
||||
InVal = LastValueMap[InValI];
|
||||
ValueMap[OrigPHINode[i]] = InVal;
|
||||
New->getInstList().erase(NewPHI);
|
||||
}
|
||||
|
||||
// Update our running map of newest clones
|
||||
LastValueMap[*BB] = New;
|
||||
for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
|
||||
VI != VE; ++VI)
|
||||
LastValueMap[VI->first] = VI->second;
|
||||
|
||||
L->addBasicBlockToLoop(New, LI->getBase());
|
||||
|
||||
// Add phi entries for newly created values to all exit blocks except
|
||||
// the successor of the latch block. The successor of the exit block will
|
||||
// be updated specially after unrolling all the way.
|
||||
if (*BB != LatchBlock)
|
||||
for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
|
||||
UI != UE;) {
|
||||
Instruction *UseInst = cast<Instruction>(*UI);
|
||||
++UI;
|
||||
if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
|
||||
PHINode *phi = cast<PHINode>(UseInst);
|
||||
Value *Incoming = phi->getIncomingValueForBlock(*BB);
|
||||
phi->addIncoming(Incoming, New);
|
||||
}
|
||||
}
|
||||
|
||||
// Keep track of new headers and latches as we create them, so that
|
||||
// we can insert the proper branches later.
|
||||
if (*BB == Header)
|
||||
Headers.push_back(New);
|
||||
if (*BB == LatchBlock) {
|
||||
Latches.push_back(New);
|
||||
|
||||
// Also, clear out the new latch's back edge so that it doesn't look
|
||||
// like a new loop, so that it's amenable to being merged with adjacent
|
||||
// blocks later on.
|
||||
TerminatorInst *Term = New->getTerminator();
|
||||
assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
|
||||
assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
|
||||
Term->setSuccessor(!ContinueOnTrue, NULL);
|
||||
}
|
||||
|
||||
NewBlocks.push_back(New);
|
||||
}
|
||||
|
||||
// Remap all instructions in the most recent iteration
|
||||
for (unsigned i = 0; i < NewBlocks.size(); ++i)
|
||||
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
|
||||
E = NewBlocks[i]->end(); I != E; ++I)
|
||||
RemapInstruction(I, LastValueMap);
|
||||
}
|
||||
|
||||
// The latch block exits the loop. If there are any PHI nodes in the
|
||||
// successor blocks, update them to use the appropriate values computed as the
|
||||
// last iteration of the loop.
|
||||
if (Count != 1) {
|
||||
SmallPtrSet<PHINode*, 8> Users;
|
||||
for (Value::use_iterator UI = LatchBlock->use_begin(),
|
||||
UE = LatchBlock->use_end(); UI != UE; ++UI)
|
||||
if (PHINode *phi = dyn_cast<PHINode>(*UI))
|
||||
Users.insert(phi);
|
||||
|
||||
BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
|
||||
for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
|
||||
SI != SE; ++SI) {
|
||||
PHINode *PN = *SI;
|
||||
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
|
||||
// If this value was defined in the loop, take the value defined by the
|
||||
// last iteration of the loop.
|
||||
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
|
||||
if (L->contains(InValI->getParent()))
|
||||
InVal = LastValueMap[InVal];
|
||||
}
|
||||
PN->addIncoming(InVal, LastIterationBB);
|
||||
}
|
||||
}
|
||||
|
||||
// Now, if we're doing complete unrolling, loop over the PHI nodes in the
|
||||
// original block, setting them to their incoming values.
|
||||
if (CompletelyUnroll) {
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
||||
PHINode *PN = OrigPHINode[i];
|
||||
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
|
||||
Header->getInstList().erase(PN);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that all the basic blocks for the unrolled iterations are in place,
|
||||
// set up the branches to connect them.
|
||||
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
|
||||
// The original branch was replicated in each unrolled iteration.
|
||||
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
|
||||
|
||||
// The branch destination.
|
||||
unsigned j = (i + 1) % e;
|
||||
BasicBlock *Dest = Headers[j];
|
||||
bool NeedConditional = true;
|
||||
|
||||
// For a complete unroll, make the last iteration end with a branch
|
||||
// to the exit block.
|
||||
if (CompletelyUnroll && j == 0) {
|
||||
Dest = LoopExit;
|
||||
NeedConditional = false;
|
||||
}
|
||||
|
||||
// If we know the trip count or a multiple of it, we can safely use an
|
||||
// unconditional branch for some iterations.
|
||||
if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
|
||||
NeedConditional = false;
|
||||
}
|
||||
|
||||
if (NeedConditional) {
|
||||
// Update the conditional branch's successor for the following
|
||||
// iteration.
|
||||
Term->setSuccessor(!ContinueOnTrue, Dest);
|
||||
} else {
|
||||
Term->setUnconditionalDest(Dest);
|
||||
// Merge adjacent basic blocks, if possible.
|
||||
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest)) {
|
||||
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
|
||||
std::replace(Headers.begin(), Headers.end(), Dest, Fold);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, the code is well formed. We now do a quick sweep over the
|
||||
// inserted code, doing constant propagation and dead code elimination as we
|
||||
// go.
|
||||
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
|
||||
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
|
||||
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
|
||||
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
|
||||
Instruction *Inst = I++;
|
||||
|
||||
if (isInstructionTriviallyDead(Inst))
|
||||
(*BB)->getInstList().erase(Inst);
|
||||
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
||||
Inst->replaceAllUsesWith(C);
|
||||
(*BB)->getInstList().erase(Inst);
|
||||
}
|
||||
}
|
||||
|
||||
NumCompletelyUnrolled += CompletelyUnroll;
|
||||
++NumUnrolled;
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,371 @@
|
|||
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements some loop unrolling utilities. It does not define any
|
||||
// actual pass or policy, but provides a single function to perform loop
|
||||
// unrolling.
|
||||
//
|
||||
// It works best when loops have been canonicalized by the -indvars pass,
|
||||
// allowing it to determine the trip counts of loops easily.
|
||||
//
|
||||
// The process of unrolling can produce extraneous basic blocks linked with
|
||||
// unconditional branches. This will be corrected in the future.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "loop-unroll"
|
||||
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Transforms/Utils/Cloning.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
/* TODO: Should these be here or in LoopUnroll? */
|
||||
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
|
||||
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
|
||||
|
||||
/// RemapInstruction - Convert the instruction operands from referencing the
|
||||
/// current values into those specified by ValueMap.
|
||||
static inline void RemapInstruction(Instruction *I,
|
||||
DenseMap<const Value *, Value*> &ValueMap) {
|
||||
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
|
||||
Value *Op = I->getOperand(op);
|
||||
DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
|
||||
if (It != ValueMap.end()) Op = It->second;
|
||||
I->setOperand(op, Op);
|
||||
}
|
||||
}
|
||||
|
||||
/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
|
||||
/// only has one predecessor, and that predecessor only has one successor.
|
||||
/// The LoopInfo Analysis that is passed will be kept consistent.
|
||||
/// Returns the new combined block.
|
||||
static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
|
||||
// Merge basic blocks into their predecessor if there is only one distinct
|
||||
// pred, and if there is only one distinct successor of the predecessor, and
|
||||
// if there are no PHI nodes.
|
||||
BasicBlock *OnlyPred = BB->getSinglePredecessor();
|
||||
if (!OnlyPred) return 0;
|
||||
|
||||
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
|
||||
return 0;
|
||||
|
||||
DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
|
||||
|
||||
// Resolve any PHI nodes at the start of the block. They are all
|
||||
// guaranteed to have exactly one entry if they exist, unless there are
|
||||
// multiple duplicate (but guaranteed to be equal) entries for the
|
||||
// incoming edges. This occurs when there are multiple edges from
|
||||
// OnlyPred to OnlySucc.
|
||||
//
|
||||
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
||||
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
||||
BB->getInstList().pop_front(); // Delete the phi node...
|
||||
}
|
||||
|
||||
// Delete the unconditional branch from the predecessor...
|
||||
OnlyPred->getInstList().pop_back();
|
||||
|
||||
// Move all definitions in the successor to the predecessor...
|
||||
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
||||
|
||||
// Make all PHI nodes that referred to BB now refer to Pred as their
|
||||
// source...
|
||||
BB->replaceAllUsesWith(OnlyPred);
|
||||
|
||||
std::string OldName = BB->getName();
|
||||
|
||||
// Erase basic block from the function...
|
||||
LI->removeBlock(BB);
|
||||
BB->eraseFromParent();
|
||||
|
||||
// Inherit predecessor's name if it exists...
|
||||
if (!OldName.empty() && !OnlyPred->hasName())
|
||||
OnlyPred->setName(OldName);
|
||||
|
||||
return OnlyPred;
|
||||
}
|
||||
|
||||
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
|
||||
/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
|
||||
/// can only fail when the loop's latch block is not terminated by a conditional
|
||||
/// branch instruction. However, if the trip count (and multiple) are not known,
|
||||
/// loop unrolling will mostly produce more code that is no faster.
|
||||
///
|
||||
/// The LoopInfo Analysis that is passed will be kept consistent.
|
||||
///
|
||||
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
|
||||
/// removed from the LoopPassManager as well. LPM can also be NULL.
|
||||
bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
|
||||
assert(L->isLCSSAForm());
|
||||
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *LatchBlock = L->getLoopLatch();
|
||||
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
||||
|
||||
if (!BI || BI->isUnconditional()) {
|
||||
// The loop-rotate pass can be helpful to avoid this in many cases.
|
||||
DOUT << " Can't unroll; loop not terminated by a conditional branch.\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Find trip count
|
||||
unsigned TripCount = L->getSmallConstantTripCount();
|
||||
// Find trip multiple if count is not available
|
||||
unsigned TripMultiple = 1;
|
||||
if (TripCount == 0)
|
||||
TripMultiple = L->getSmallConstantTripMultiple();
|
||||
|
||||
if (TripCount != 0)
|
||||
DOUT << " Trip Count = " << TripCount << "\n";
|
||||
if (TripMultiple != 1)
|
||||
DOUT << " Trip Multiple = " << TripMultiple << "\n";
|
||||
|
||||
// Effectively "DCE" unrolled iterations that are beyond the tripcount
|
||||
// and will never be executed.
|
||||
if (TripCount != 0 && Count > TripCount)
|
||||
Count = TripCount;
|
||||
|
||||
assert(Count > 0);
|
||||
assert(TripMultiple > 0);
|
||||
assert(TripCount == 0 || TripCount % TripMultiple == 0);
|
||||
|
||||
// Are we eliminating the loop control altogether?
|
||||
bool CompletelyUnroll = Count == TripCount;
|
||||
|
||||
// If we know the trip count, we know the multiple...
|
||||
unsigned BreakoutTrip = 0;
|
||||
if (TripCount != 0) {
|
||||
BreakoutTrip = TripCount % Count;
|
||||
TripMultiple = 0;
|
||||
} else {
|
||||
// Figure out what multiple to use.
|
||||
BreakoutTrip = TripMultiple =
|
||||
(unsigned)GreatestCommonDivisor64(Count, TripMultiple);
|
||||
}
|
||||
|
||||
if (CompletelyUnroll) {
|
||||
DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
|
||||
<< " with trip count " << TripCount << "!\n";
|
||||
} else {
|
||||
DOUT << "UNROLLING loop %" << Header->getName()
|
||||
<< " by " << Count;
|
||||
if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
|
||||
DOUT << " with a breakout at trip " << BreakoutTrip;
|
||||
} else if (TripMultiple != 1) {
|
||||
DOUT << " with " << TripMultiple << " trips per branch";
|
||||
}
|
||||
DOUT << "!\n";
|
||||
}
|
||||
|
||||
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
|
||||
|
||||
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
|
||||
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
|
||||
|
||||
// For the first iteration of the loop, we should use the precloned values for
|
||||
// PHI nodes. Insert associations now.
|
||||
typedef DenseMap<const Value*, Value*> ValueMapTy;
|
||||
ValueMapTy LastValueMap;
|
||||
std::vector<PHINode*> OrigPHINode;
|
||||
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
||||
PHINode *PN = cast<PHINode>(I);
|
||||
OrigPHINode.push_back(PN);
|
||||
if (Instruction *I =
|
||||
dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
|
||||
if (L->contains(I->getParent()))
|
||||
LastValueMap[I] = I;
|
||||
}
|
||||
|
||||
std::vector<BasicBlock*> Headers;
|
||||
std::vector<BasicBlock*> Latches;
|
||||
Headers.push_back(Header);
|
||||
Latches.push_back(LatchBlock);
|
||||
|
||||
for (unsigned It = 1; It != Count; ++It) {
|
||||
char SuffixBuffer[100];
|
||||
sprintf(SuffixBuffer, ".%d", It);
|
||||
|
||||
std::vector<BasicBlock*> NewBlocks;
|
||||
|
||||
for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
|
||||
E = LoopBlocks.end(); BB != E; ++BB) {
|
||||
ValueMapTy ValueMap;
|
||||
BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
|
||||
Header->getParent()->getBasicBlockList().push_back(New);
|
||||
|
||||
// Loop over all of the PHI nodes in the block, changing them to use the
|
||||
// incoming values from the previous block.
|
||||
if (*BB == Header)
|
||||
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
||||
PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
|
||||
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
|
||||
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
|
||||
if (It > 1 && L->contains(InValI->getParent()))
|
||||
InVal = LastValueMap[InValI];
|
||||
ValueMap[OrigPHINode[i]] = InVal;
|
||||
New->getInstList().erase(NewPHI);
|
||||
}
|
||||
|
||||
// Update our running map of newest clones
|
||||
LastValueMap[*BB] = New;
|
||||
for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
|
||||
VI != VE; ++VI)
|
||||
LastValueMap[VI->first] = VI->second;
|
||||
|
||||
L->addBasicBlockToLoop(New, LI->getBase());
|
||||
|
||||
// Add phi entries for newly created values to all exit blocks except
|
||||
// the successor of the latch block. The successor of the exit block will
|
||||
// be updated specially after unrolling all the way.
|
||||
if (*BB != LatchBlock)
|
||||
for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
|
||||
UI != UE;) {
|
||||
Instruction *UseInst = cast<Instruction>(*UI);
|
||||
++UI;
|
||||
if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
|
||||
PHINode *phi = cast<PHINode>(UseInst);
|
||||
Value *Incoming = phi->getIncomingValueForBlock(*BB);
|
||||
phi->addIncoming(Incoming, New);
|
||||
}
|
||||
}
|
||||
|
||||
// Keep track of new headers and latches as we create them, so that
|
||||
// we can insert the proper branches later.
|
||||
if (*BB == Header)
|
||||
Headers.push_back(New);
|
||||
if (*BB == LatchBlock) {
|
||||
Latches.push_back(New);
|
||||
|
||||
// Also, clear out the new latch's back edge so that it doesn't look
|
||||
// like a new loop, so that it's amenable to being merged with adjacent
|
||||
// blocks later on.
|
||||
TerminatorInst *Term = New->getTerminator();
|
||||
assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
|
||||
assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
|
||||
Term->setSuccessor(!ContinueOnTrue, NULL);
|
||||
}
|
||||
|
||||
NewBlocks.push_back(New);
|
||||
}
|
||||
|
||||
// Remap all instructions in the most recent iteration
|
||||
for (unsigned i = 0; i < NewBlocks.size(); ++i)
|
||||
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
|
||||
E = NewBlocks[i]->end(); I != E; ++I)
|
||||
RemapInstruction(I, LastValueMap);
|
||||
}
|
||||
|
||||
// The latch block exits the loop. If there are any PHI nodes in the
|
||||
// successor blocks, update them to use the appropriate values computed as the
|
||||
// last iteration of the loop.
|
||||
if (Count != 1) {
|
||||
SmallPtrSet<PHINode*, 8> Users;
|
||||
for (Value::use_iterator UI = LatchBlock->use_begin(),
|
||||
UE = LatchBlock->use_end(); UI != UE; ++UI)
|
||||
if (PHINode *phi = dyn_cast<PHINode>(*UI))
|
||||
Users.insert(phi);
|
||||
|
||||
BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
|
||||
for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
|
||||
SI != SE; ++SI) {
|
||||
PHINode *PN = *SI;
|
||||
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
|
||||
// If this value was defined in the loop, take the value defined by the
|
||||
// last iteration of the loop.
|
||||
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
|
||||
if (L->contains(InValI->getParent()))
|
||||
InVal = LastValueMap[InVal];
|
||||
}
|
||||
PN->addIncoming(InVal, LastIterationBB);
|
||||
}
|
||||
}
|
||||
|
||||
// Now, if we're doing complete unrolling, loop over the PHI nodes in the
|
||||
// original block, setting them to their incoming values.
|
||||
if (CompletelyUnroll) {
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
|
||||
PHINode *PN = OrigPHINode[i];
|
||||
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
|
||||
Header->getInstList().erase(PN);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that all the basic blocks for the unrolled iterations are in place,
|
||||
// set up the branches to connect them.
|
||||
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
|
||||
// The original branch was replicated in each unrolled iteration.
|
||||
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
|
||||
|
||||
// The branch destination.
|
||||
unsigned j = (i + 1) % e;
|
||||
BasicBlock *Dest = Headers[j];
|
||||
bool NeedConditional = true;
|
||||
|
||||
// For a complete unroll, make the last iteration end with a branch
|
||||
// to the exit block.
|
||||
if (CompletelyUnroll && j == 0) {
|
||||
Dest = LoopExit;
|
||||
NeedConditional = false;
|
||||
}
|
||||
|
||||
// If we know the trip count or a multiple of it, we can safely use an
|
||||
// unconditional branch for some iterations.
|
||||
if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
|
||||
NeedConditional = false;
|
||||
}
|
||||
|
||||
if (NeedConditional) {
|
||||
// Update the conditional branch's successor for the following
|
||||
// iteration.
|
||||
Term->setSuccessor(!ContinueOnTrue, Dest);
|
||||
} else {
|
||||
Term->setUnconditionalDest(Dest);
|
||||
// Merge adjacent basic blocks, if possible.
|
||||
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
|
||||
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
|
||||
std::replace(Headers.begin(), Headers.end(), Dest, Fold);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, the code is well formed. We now do a quick sweep over the
|
||||
// inserted code, doing constant propagation and dead code elimination as we
|
||||
// go.
|
||||
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
|
||||
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
|
||||
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
|
||||
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
|
||||
Instruction *Inst = I++;
|
||||
|
||||
if (isInstructionTriviallyDead(Inst))
|
||||
(*BB)->getInstList().erase(Inst);
|
||||
else if (Constant *C = ConstantFoldInstruction(Inst)) {
|
||||
Inst->replaceAllUsesWith(C);
|
||||
(*BB)->getInstList().erase(Inst);
|
||||
}
|
||||
}
|
||||
|
||||
NumCompletelyUnrolled += CompletelyUnroll;
|
||||
++NumUnrolled;
|
||||
// Remove the loop from the LoopPassManager if it's completely removed.
|
||||
if (CompletelyUnroll && LPM != NULL)
|
||||
LPM->deleteLoopFromQueue(L);
|
||||
|
||||
// If we didn't completely unroll the loop, it should still be in LCSSA form.
|
||||
if (!CompletelyUnroll)
|
||||
assert(L->isLCSSAForm());
|
||||
|
||||
return true;
|
||||
}
|
Loading…
Reference in New Issue