[APFloat] Converted all references to APFloat::isNormal => APFloat::isFiniteNonZero.

Turns out all the references were in llvm and not in clang.

llvm-svn: 184356
This commit is contained in:
Michael Gottesman 2013-06-19 21:23:18 +00:00
parent 38e6b86da0
commit 3cb77ab98a
5 changed files with 15 additions and 15 deletions

View File

@ -362,7 +362,7 @@ public:
/// ///
/// The current implementation of isNormal() differs from this by treating /// The current implementation of isNormal() differs from this by treating
/// subnormal values as normal values. /// subnormal values as normal values.
bool isIEEENormal() const { return !isDenormal() && isNormal(); } bool isIEEENormal() const { return !isDenormal() && isFiniteNonZero(); }
/// Returns true if and only if the current value is zero, subnormal, or /// Returns true if and only if the current value is zero, subnormal, or
/// normal. /// normal.

View File

@ -1955,7 +1955,7 @@ void Verifier::visitInstruction(Instruction &I) {
Value *Op0 = MD->getOperand(0); Value *Op0 = MD->getOperand(0);
if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) { if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
APFloat Accuracy = CFP0->getValueAPF(); APFloat Accuracy = CFP0->getValueAPF();
Assert1(Accuracy.isNormal() && !Accuracy.isNegative(), Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I); "fpmath accuracy not a positive number!", &I);
} else { } else {
Assert1(false, "invalid fpmath accuracy!", &I); Assert1(false, "invalid fpmath accuracy!", &I);

View File

@ -679,7 +679,7 @@ APFloat::operator=(const APFloat &rhs)
bool bool
APFloat::isDenormal() const { APFloat::isDenormal() const {
return isNormal() && (exponent == semantics->minExponent) && return isFiniteNonZero() && (exponent == semantics->minExponent) &&
(APInt::tcExtractBit(significandParts(), (APInt::tcExtractBit(significandParts(),
semantics->precision - 1) == 0); semantics->precision - 1) == 0);
} }
@ -689,7 +689,7 @@ APFloat::isSmallest() const {
// The smallest number by magnitude in our format will be the smallest // The smallest number by magnitude in our format will be the smallest
// denormal, i.e. the floating point number with exponent being minimum // denormal, i.e. the floating point number with exponent being minimum
// exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
return isNormal() && exponent == semantics->minExponent && return isFiniteNonZero() && exponent == semantics->minExponent &&
significandMSB() == 0; significandMSB() == 0;
} }
@ -741,7 +741,7 @@ bool
APFloat::isLargest() const { APFloat::isLargest() const {
// The largest number by magnitude in our format will be the floating point // The largest number by magnitude in our format will be the floating point
// number with maximum exponent and with significand that is all ones. // number with maximum exponent and with significand that is all ones.
return isNormal() && exponent == semantics->maxExponent return isFiniteNonZero() && exponent == semantics->maxExponent
&& isSignificandAllOnes(); && isSignificandAllOnes();
} }

View File

@ -488,7 +488,7 @@ Value *FAddCombine::performFactorization(Instruction *I) {
createFSub(AddSub0, AddSub1); createFSub(AddSub0, AddSub1);
if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) { if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
const APFloat &F = CFP->getValueAPF(); const APFloat &F = CFP->getValueAPF();
if (!F.isNormal() || F.isDenormal()) if (!F.isFiniteNonZero() || F.isDenormal())
return 0; return 0;
} }

View File

@ -338,13 +338,13 @@ static bool isFMulOrFDivWithConstant(Value *V) {
if (C0 && C1) if (C0 && C1)
return false; return false;
return (C0 && C0->getValueAPF().isNormal()) || return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
(C1 && C1->getValueAPF().isNormal()); (C1 && C1->getValueAPF().isFiniteNonZero());
} }
static bool isNormalFp(const ConstantFP *C) { static bool isNormalFp(const ConstantFP *C) {
const APFloat &Flt = C->getValueAPF(); const APFloat &Flt = C->getValueAPF();
return Flt.isNormal() && !Flt.isDenormal(); return Flt.isFiniteNonZero() && !Flt.isDenormal();
} }
/// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
@ -423,7 +423,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
return NV; return NV;
ConstantFP *C = dyn_cast<ConstantFP>(Op1); ConstantFP *C = dyn_cast<ConstantFP>(Op1);
if (C && AllowReassociate && C->getValueAPF().isNormal()) { if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
// Let MDC denote an expression in one of these forms: // Let MDC denote an expression in one of these forms:
// X * C, C/X, X/C, where C is a constant. // X * C, C/X, X/C, where C is a constant.
// //
@ -450,7 +450,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Swap = true; Swap = true;
} }
if (C1 && C1->getValueAPF().isNormal() && if (C1 && C1->getValueAPF().isFiniteNonZero() &&
isFMulOrFDivWithConstant(Opnd0)) { isFMulOrFDivWithConstant(Opnd0)) {
Value *M1 = ConstantExpr::getFMul(C1, C); Value *M1 = ConstantExpr::getFMul(C1, C);
Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ? Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
@ -858,7 +858,7 @@ static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
APFloat Reciprocal(FpVal.getSemantics()); APFloat Reciprocal(FpVal.getSemantics());
bool Cvt = FpVal.getExactInverse(&Reciprocal); bool Cvt = FpVal.getExactInverse(&Reciprocal);
if (!Cvt && AllowReciprocal && FpVal.isNormal()) { if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
(void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
Cvt = !Reciprocal.isDenormal(); Cvt = !Reciprocal.isDenormal();
@ -893,14 +893,14 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
// //
Constant *C = ConstantExpr::getFDiv(C1, C2); Constant *C = ConstantExpr::getFDiv(C1, C2);
const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
if (F.isNormal() && !F.isDenormal()) if (F.isFiniteNonZero() && !F.isDenormal())
Res = BinaryOperator::CreateFMul(X, C); Res = BinaryOperator::CreateFMul(X, C);
} else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
// (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
// //
Constant *C = ConstantExpr::getFMul(C1, C2); Constant *C = ConstantExpr::getFMul(C1, C2);
const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
if (F.isNormal() && !F.isDenormal()) { if (F.isFiniteNonZero() && !F.isDenormal()) {
Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
AllowReciprocal); AllowReciprocal);
if (!Res) if (!Res)
@ -941,7 +941,7 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
if (Fold) { if (Fold) {
const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
if (FoldC.isNormal() && !FoldC.isDenormal()) { if (FoldC.isFiniteNonZero() && !FoldC.isDenormal()) {
Instruction *R = CreateDiv ? Instruction *R = CreateDiv ?
BinaryOperator::CreateFDiv(Fold, X) : BinaryOperator::CreateFDiv(Fold, X) :
BinaryOperator::CreateFMul(X, Fold); BinaryOperator::CreateFMul(X, Fold);