Revert "[CGP] Split some critical edges coming out of indirect branches"

This reverts commit r296149 as it leads to crashes when compiling for
PPC.

llvm-svn: 296295
This commit is contained in:
Daniel Jasper 2017-02-26 11:09:12 +00:00
parent 49a0aac1aa
commit 3ca4525612
5 changed files with 13 additions and 435 deletions

View File

@ -15,12 +15,10 @@
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
@ -55,10 +53,8 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@ -226,7 +222,6 @@ class TypePromotionTransaction;
unsigned CreatedInstCost);
bool splitBranchCondition(Function &F);
bool simplifyOffsetableRelocate(Instruction &I);
bool splitIndirectCriticalEdges(Function &F);
};
}
@ -301,10 +296,6 @@ bool CodeGenPrepare::runOnFunction(Function &F) {
if (!DisableBranchOpts)
EverMadeChange |= splitBranchCondition(F);
// Split some critical edges where one of the sources is an indirect branch,
// to help generate sane code for PHIs involving such edges.
EverMadeChange |= splitIndirectCriticalEdges(F);
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
@ -438,152 +429,6 @@ BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
return DestBB;
}
// Return the unique indirectbr predecessor of a block. This may return null
// even if such a predecessor exists, if it's not useful for splitting.
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
// predecessors of BB.
static BasicBlock *
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
// If the block doesn't have any PHIs, we don't care about it, since there's
// no point in splitting it.
PHINode *PN = dyn_cast<PHINode>(BB->begin());
if (!PN)
return nullptr;
// Verify we have exactly one IBR predecessor.
// Conservatively bail out if one of the other predecessors is not a "regular"
// terminator (that is, not a switch or a br).
BasicBlock *IBB = nullptr;
for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
BasicBlock *PredBB = PN->getIncomingBlock(Pred);
TerminatorInst *PredTerm = PredBB->getTerminator();
switch (PredTerm->getOpcode()) {
case Instruction::IndirectBr:
if (IBB)
return nullptr;
IBB = PredBB;
break;
case Instruction::Br:
case Instruction::Switch:
OtherPreds.push_back(PredBB);
continue;
default:
return nullptr;
}
}
return IBB;
}
// Split critical edges where the source of the edge is an indirectbr
// instruction. This isn't always possible, but we can handle some easy cases.
// This is useful because MI is unable to split such critical edges,
// which means it will not be able to sink instructions along those edges.
// This is especially painful for indirect branches with many successors, where
// we end up having to prepare all outgoing values in the origin block.
//
// Our normal algorithm for splitting critical edges requires us to update
// the outgoing edges of the edge origin block, but for an indirectbr this
// is hard, since it would require finding and updating the block addresses
// the indirect branch uses. But if a block only has a single indirectbr
// predecessor, with the others being regular branches, we can do it in a
// different way.
// Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
// We can split D into D0 and D1, where D0 contains only the PHIs from D,
// and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
// create the following structure:
// A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
// Check whether the function has any indirectbrs, and collect which blocks
// they may jump to. Since most functions don't have indirect branches,
// this lowers the common case's overhead to O(Blocks) instead of O(Edges).
SmallSetVector<BasicBlock *, 16> Targets;
for (auto &BB : F) {
auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
if (!IBI)
continue;
for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
Targets.insert(IBI->getSuccessor(Succ));
}
if (Targets.empty())
return false;
bool Changed = false;
for (BasicBlock *Target : Targets) {
SmallVector<BasicBlock *, 16> OtherPreds;
BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
if (!IBRPred)
continue;
// Don't even think about ehpads/landingpads.
Instruction *FirstNonPHI = Target->getFirstNonPHI();
if (FirstNonPHI->isEHPad() || Target->isLandingPad())
continue;
BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
// It's possible Target was its own successor through an indirectbr.
// In this case, the indirectbr now comes from BodyBlock.
if (IBRPred == Target)
IBRPred = BodyBlock;
// At this point Target only has PHIs, and BodyBlock has the rest of the
// block's body. Create a copy of Target that will be used by the "direct"
// preds.
ValueToValueMapTy VMap;
BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
for (BasicBlock *Pred : OtherPreds)
Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
// Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
// they are clones, so the number of PHIs are the same.
// (a) Remove the edge coming from IBRPred from the "Direct" PHI
// (b) Leave that as the only edge in the "Indirect" PHI.
// (c) Merge the two in the body block.
BasicBlock::iterator Indirect = Target->begin(),
End = Target->getFirstNonPHI()->getIterator();
BasicBlock::iterator Direct = DirectSucc->begin();
BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
assert(&*End == Target->getTerminator() &&
"Block was expected to only contain PHIs");
while (Indirect != End) {
PHINode *DirPHI = cast<PHINode>(Direct);
PHINode *IndPHI = cast<PHINode>(Indirect);
// Now, clean up - the direct block shouldn't get the indirect value,
// and vice versa.
DirPHI->removeIncomingValue(IBRPred);
Direct++;
// Advance the pointer here, to avoid invalidation issues when the old
// PHI is erased.
Indirect++;
PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
IBRPred);
// Create a PHI in the body block, to merge the direct and indirect
// predecessors.
PHINode *MergePHI =
PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
MergePHI->addIncoming(NewIndPHI, Target);
MergePHI->addIncoming(DirPHI, DirectSucc);
IndPHI->replaceAllUsesWith(MergePHI);
IndPHI->eraseFromParent();
}
Changed = true;
}
return Changed;
}
/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these

View File

@ -47,7 +47,6 @@ L3: ; preds = %L4, %bb2
br label %L2
L2: ; preds = %L3, %bb2
; THUMB-LABEL: %L1.clone
; THUMB: muls
%res.2 = phi i32 [ %res.1, %L3 ], [ 1, %bb2 ] ; <i32> [#uses=1]
%phitmp = mul i32 %res.2, 6 ; <i32> [#uses=1]

View File

@ -5,7 +5,7 @@ define internal i16 @foo(i16 %i) nounwind {
entry:
%tmp1 = getelementptr inbounds [5 x i8*], [5 x i8*]* @C.0.2070, i16 0, i16 %i ; <i8**> [#uses=1]
%gotovar.4.0 = load i8*, i8** %tmp1, align 4 ; <i8*> [#uses=1]
; CHECK: br .LC.0.2070(r15)
; CHECK: br .LC.0.2070(r12)
indirectbr i8* %gotovar.4.0, [label %L5, label %L4, label %L3, label %L2, label %L1]
L5: ; preds = %bb2

View File

@ -17,35 +17,23 @@ entry:
bb2: ; preds = %entry, %bb3
%gotovar.4.0 = phi i8* [ %gotovar.4.0.pre, %bb3 ], [ %0, %entry ] ; <i8*> [#uses=1]
; PIC: mtctr
; PIC-NEXT: li
; PIC-NEXT: li
; PIC-NEXT: li
; PIC-NEXT: li
; PIC-NEXT: bctr
; PIC: li
; PIC: b LBB
; PIC: li
; PIC: b LBB
; PIC: li
; PIC: b LBB
; PIC: li
; PIC: b LBB
; STATIC: mtctr
; STATIC-NEXT: li
; STATIC-NEXT: li
; STATIC-NEXT: li
; STATIC-NEXT: li
; STATIC-NEXT: bctr
; STATIC: li
; STATIC: b LBB
; STATIC: li
; STATIC: b LBB
; STATIC: li
; STATIC: b LBB
; STATIC: li
; STATIC: b LBB
; PPC64: mtctr
; PPC64-NEXT: li
; PPC64-NEXT: li
; PPC64-NEXT: li
; PPC64-NEXT: li
; PPC64-NEXT: bctr
; PPC64: li
; PPC64: b LBB
; PPC64: li
; PPC64: b LBB
; PPC64: li
; PPC64: b LBB
; PPC64: li
; PPC64: b LBB
indirectbr i8* %gotovar.4.0, [label %L5, label %L4, label %L3, label %L2, label %L1]
bb3: ; preds = %entry

View File

@ -1,254 +0,0 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -codegenprepare -S < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
declare void @use(i32) local_unnamed_addr
declare void @useptr([2 x i8*]*) local_unnamed_addr
; CHECK: @simple.targets = constant [2 x i8*] [i8* blockaddress(@simple, %bb0), i8* blockaddress(@simple, %bb1)], align 16
@simple.targets = constant [2 x i8*] [i8* blockaddress(@simple, %bb0), i8* blockaddress(@simple, %bb1)], align 16
; CHECK: @multi.targets = constant [2 x i8*] [i8* blockaddress(@multi, %bb0), i8* blockaddress(@multi, %bb1)], align 16
@multi.targets = constant [2 x i8*] [i8* blockaddress(@multi, %bb0), i8* blockaddress(@multi, %bb1)], align 16
; CHECK: @loop.targets = constant [2 x i8*] [i8* blockaddress(@loop, %bb0), i8* blockaddress(@loop, %bb1)], align 16
@loop.targets = constant [2 x i8*] [i8* blockaddress(@loop, %bb0), i8* blockaddress(@loop, %bb1)], align 16
; CHECK: @nophi.targets = constant [2 x i8*] [i8* blockaddress(@nophi, %bb0), i8* blockaddress(@nophi, %bb1)], align 16
@nophi.targets = constant [2 x i8*] [i8* blockaddress(@nophi, %bb0), i8* blockaddress(@nophi, %bb1)], align 16
; Check that we break the critical edge when an jump table has only one use.
define void @simple(i32* nocapture readonly %p) {
; CHECK-LABEL: @simple(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[P:%.*]], i64 1
; CHECK-NEXT: [[INITVAL:%.*]] = load i32, i32* [[P]], align 4
; CHECK-NEXT: [[INITOP:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4
; CHECK-NEXT: switch i32 [[INITOP]], label [[EXIT:%.*]] [
; CHECK-NEXT: i32 0, label [[BB0_CLONE:%.*]]
; CHECK-NEXT: i32 1, label [[BB1_CLONE:%.*]]
; CHECK-NEXT: ]
; CHECK: bb0:
; CHECK-NEXT: br label [[DOTSPLIT:%.*]]
; CHECK: .split:
; CHECK-NEXT: [[MERGE:%.*]] = phi i32* [ [[PTR:%.*]], [[BB0:%.*]] ], [ [[INCDEC_PTR]], [[BB0_CLONE]] ]
; CHECK-NEXT: [[MERGE2:%.*]] = phi i32 [ 0, [[BB0]] ], [ [[INITVAL]], [[BB0_CLONE]] ]
; CHECK-NEXT: tail call void @use(i32 [[MERGE2]])
; CHECK-NEXT: br label [[INDIRECTGOTO:%.*]]
; CHECK: bb1:
; CHECK-NEXT: br label [[DOTSPLIT3:%.*]]
; CHECK: .split3:
; CHECK-NEXT: [[MERGE5:%.*]] = phi i32* [ [[PTR]], [[BB1:%.*]] ], [ [[INCDEC_PTR]], [[BB1_CLONE]] ]
; CHECK-NEXT: [[MERGE7:%.*]] = phi i32 [ 1, [[BB1]] ], [ [[INITVAL]], [[BB1_CLONE]] ]
; CHECK-NEXT: tail call void @use(i32 [[MERGE7]])
; CHECK-NEXT: br label [[INDIRECTGOTO]]
; CHECK: indirectgoto:
; CHECK-NEXT: [[P_ADDR_SINK:%.*]] = phi i32* [ [[MERGE5]], [[DOTSPLIT3]] ], [ [[MERGE]], [[DOTSPLIT]] ]
; CHECK-NEXT: [[PTR]] = getelementptr inbounds i32, i32* [[P_ADDR_SINK]], i64 1
; CHECK-NEXT: [[NEWP:%.*]] = load i32, i32* [[P_ADDR_SINK]], align 4
; CHECK-NEXT: [[IDX:%.*]] = sext i32 [[NEWP]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2 x i8*], [2 x i8*]* @simple.targets, i64 0, i64 [[IDX]]
; CHECK-NEXT: [[NEWOP:%.*]] = load i8*, i8** [[ARRAYIDX]], align 8
; CHECK-NEXT: indirectbr i8* [[NEWOP]], [label [[BB0]], label %bb1]
; CHECK: exit:
; CHECK-NEXT: ret void
; CHECK: bb0.clone:
; CHECK-NEXT: br label [[DOTSPLIT]]
; CHECK: bb1.clone:
; CHECK-NEXT: br label [[DOTSPLIT3]]
;
entry:
%incdec.ptr = getelementptr inbounds i32, i32* %p, i64 1
%initval = load i32, i32* %p, align 4
%initop = load i32, i32* %incdec.ptr, align 4
switch i32 %initop, label %exit [
i32 0, label %bb0
i32 1, label %bb1
]
bb0:
%p.addr.0 = phi i32* [ %incdec.ptr, %entry ], [ %ptr, %indirectgoto ]
%opcode.0 = phi i32 [ %initval, %entry ], [ 0, %indirectgoto ]
tail call void @use(i32 %opcode.0)
br label %indirectgoto
bb1:
%p.addr.1 = phi i32* [ %incdec.ptr, %entry ], [ %ptr, %indirectgoto ]
%opcode.1 = phi i32 [ %initval, %entry ], [ 1, %indirectgoto ]
tail call void @use(i32 %opcode.1)
br label %indirectgoto
indirectgoto:
%p.addr.sink = phi i32* [ %p.addr.1, %bb1 ], [ %p.addr.0, %bb0 ]
%ptr = getelementptr inbounds i32, i32* %p.addr.sink, i64 1
%newp = load i32, i32* %p.addr.sink, align 4
%idx = sext i32 %newp to i64
%arrayidx = getelementptr inbounds [2 x i8*], [2 x i8*]* @simple.targets, i64 0, i64 %idx
%newop = load i8*, i8** %arrayidx, align 8
indirectbr i8* %newop, [label %bb0, label %bb1]
exit:
ret void
}
; Don't try to break critical edges when several indirectbr point to a single block
define void @multi(i32* nocapture readonly %p) {
; CHECK-LABEL: @multi(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[P:%.*]], i64 1
; CHECK-NEXT: [[INITVAL:%.*]] = load i32, i32* [[P]], align 4
; CHECK-NEXT: [[INITOP:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4
; CHECK-NEXT: switch i32 [[INITOP]], label [[EXIT:%.*]] [
; CHECK-NEXT: i32 0, label [[BB0:%.*]]
; CHECK-NEXT: i32 1, label [[BB1:%.*]]
; CHECK-NEXT: ]
; CHECK: bb0:
; CHECK-NEXT: [[P_ADDR_0:%.*]] = phi i32* [ [[INCDEC_PTR]], [[ENTRY:%.*]] ], [ [[NEXT0:%.*]], [[BB0]] ], [ [[NEXT1:%.*]], [[BB1]] ]
; CHECK-NEXT: [[OPCODE_0:%.*]] = phi i32 [ [[INITVAL]], [[ENTRY]] ], [ 0, [[BB0]] ], [ 1, [[BB1]] ]
; CHECK-NEXT: tail call void @use(i32 [[OPCODE_0]])
; CHECK-NEXT: [[NEXT0]] = getelementptr inbounds i32, i32* [[P_ADDR_0]], i64 1
; CHECK-NEXT: [[NEWP0:%.*]] = load i32, i32* [[P_ADDR_0]], align 4
; CHECK-NEXT: [[IDX0:%.*]] = sext i32 [[NEWP0]] to i64
; CHECK-NEXT: [[ARRAYIDX0:%.*]] = getelementptr inbounds [2 x i8*], [2 x i8*]* @multi.targets, i64 0, i64 [[IDX0]]
; CHECK-NEXT: [[NEWOP0:%.*]] = load i8*, i8** [[ARRAYIDX0]], align 8
; CHECK-NEXT: indirectbr i8* [[NEWOP0]], [label [[BB0]], label %bb1]
; CHECK: bb1:
; CHECK-NEXT: [[P_ADDR_1:%.*]] = phi i32* [ [[INCDEC_PTR]], [[ENTRY]] ], [ [[NEXT0]], [[BB0]] ], [ [[NEXT1]], [[BB1]] ]
; CHECK-NEXT: [[OPCODE_1:%.*]] = phi i32 [ [[INITVAL]], [[ENTRY]] ], [ 0, [[BB0]] ], [ 1, [[BB1]] ]
; CHECK-NEXT: tail call void @use(i32 [[OPCODE_1]])
; CHECK-NEXT: [[NEXT1]] = getelementptr inbounds i32, i32* [[P_ADDR_1]], i64 1
; CHECK-NEXT: [[NEWP1:%.*]] = load i32, i32* [[P_ADDR_1]], align 4
; CHECK-NEXT: [[IDX1:%.*]] = sext i32 [[NEWP1]] to i64
; CHECK-NEXT: [[ARRAYIDX1:%.*]] = getelementptr inbounds [2 x i8*], [2 x i8*]* @multi.targets, i64 0, i64 [[IDX1]]
; CHECK-NEXT: [[NEWOP1:%.*]] = load i8*, i8** [[ARRAYIDX1]], align 8
; CHECK-NEXT: indirectbr i8* [[NEWOP1]], [label [[BB0]], label %bb1]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
%incdec.ptr = getelementptr inbounds i32, i32* %p, i64 1
%initval = load i32, i32* %p, align 4
%initop = load i32, i32* %incdec.ptr, align 4
switch i32 %initop, label %exit [
i32 0, label %bb0
i32 1, label %bb1
]
bb0:
%p.addr.0 = phi i32* [ %incdec.ptr, %entry ], [ %next0, %bb0 ], [ %next1, %bb1 ]
%opcode.0 = phi i32 [ %initval, %entry ], [ 0, %bb0 ], [ 1, %bb1 ]
tail call void @use(i32 %opcode.0)
%next0 = getelementptr inbounds i32, i32* %p.addr.0, i64 1
%newp0 = load i32, i32* %p.addr.0, align 4
%idx0 = sext i32 %newp0 to i64
%arrayidx0 = getelementptr inbounds [2 x i8*], [2 x i8*]* @multi.targets, i64 0, i64 %idx0
%newop0 = load i8*, i8** %arrayidx0, align 8
indirectbr i8* %newop0, [label %bb0, label %bb1]
bb1:
%p.addr.1 = phi i32* [ %incdec.ptr, %entry ], [ %next0, %bb0 ], [ %next1, %bb1 ]
%opcode.1 = phi i32 [ %initval, %entry ], [ 0, %bb0 ], [ 1, %bb1 ]
tail call void @use(i32 %opcode.1)
%next1 = getelementptr inbounds i32, i32* %p.addr.1, i64 1
%newp1 = load i32, i32* %p.addr.1, align 4
%idx1 = sext i32 %newp1 to i64
%arrayidx1 = getelementptr inbounds [2 x i8*], [2 x i8*]* @multi.targets, i64 0, i64 %idx1
%newop1 = load i8*, i8** %arrayidx1, align 8
indirectbr i8* %newop1, [label %bb0, label %bb1]
exit:
ret void
}
; Make sure we do the right thing for cases where the indirectbr branches to
; the block it terminates.
define void @loop(i64* nocapture readonly %p) {
; CHECK-LABEL: @loop(
; CHECK-NEXT: bb0.clone:
; CHECK-NEXT: br label [[DOTSPLIT:%.*]]
; CHECK: bb0:
; CHECK-NEXT: br label [[DOTSPLIT]]
; CHECK: .split:
; CHECK-NEXT: [[MERGE:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[BB0:%.*]] ], [ 0, [[BB0_CLONE:%.*]] ]
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr inbounds i64, i64* [[P:%.*]], i64 [[MERGE]]
; CHECK-NEXT: store i64 [[MERGE]], i64* [[TMP0]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[MERGE]], 1
; CHECK-NEXT: [[IDX:%.*]] = srem i64 [[MERGE]], 2
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2 x i8*], [2 x i8*]* @loop.targets, i64 0, i64 [[IDX]]
; CHECK-NEXT: [[TARGET:%.*]] = load i8*, i8** [[ARRAYIDX]], align 8
; CHECK-NEXT: indirectbr i8* [[TARGET]], [label [[BB0]], label %bb1]
; CHECK: bb1:
; CHECK-NEXT: ret void
;
entry:
br label %bb0
bb0:
%i = phi i64 [ %i.next, %bb0 ], [ 0, %entry ]
%tmp0 = getelementptr inbounds i64, i64* %p, i64 %i
store i64 %i, i64* %tmp0, align 4
%i.next = add nuw nsw i64 %i, 1
%idx = srem i64 %i, 2
%arrayidx = getelementptr inbounds [2 x i8*], [2 x i8*]* @loop.targets, i64 0, i64 %idx
%target = load i8*, i8** %arrayidx, align 8
indirectbr i8* %target, [label %bb0, label %bb1]
bb1:
ret void
}
; Don't do anything for cases that contain no phis.
define void @nophi(i32* %p) {
; CHECK-LABEL: @nophi(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[INCDEC_PTR:%.*]] = getelementptr inbounds i32, i32* [[P:%.*]], i64 1
; CHECK-NEXT: [[INITOP:%.*]] = load i32, i32* [[INCDEC_PTR]], align 4
; CHECK-NEXT: switch i32 [[INITOP]], label [[EXIT:%.*]] [
; CHECK-NEXT: i32 0, label [[BB0:%.*]]
; CHECK-NEXT: i32 1, label [[BB1:%.*]]
; CHECK-NEXT: ]
; CHECK: bb0:
; CHECK-NEXT: tail call void @use(i32 0)
; CHECK-NEXT: br label [[INDIRECTGOTO:%.*]]
; CHECK: bb1:
; CHECK-NEXT: tail call void @use(i32 1)
; CHECK-NEXT: br label [[INDIRECTGOTO]]
; CHECK: indirectgoto:
; CHECK-NEXT: [[SUNKADDR:%.*]] = ptrtoint i32* [[P]] to i64
; CHECK-NEXT: [[SUNKADDR1:%.*]] = add i64 [[SUNKADDR]], 4
; CHECK-NEXT: [[SUNKADDR2:%.*]] = inttoptr i64 [[SUNKADDR1]] to i32*
; CHECK-NEXT: [[NEWP:%.*]] = load i32, i32* [[SUNKADDR2]], align 4
; CHECK-NEXT: [[IDX:%.*]] = sext i32 [[NEWP]] to i64
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [2 x i8*], [2 x i8*]* @nophi.targets, i64 0, i64 [[IDX]]
; CHECK-NEXT: [[NEWOP:%.*]] = load i8*, i8** [[ARRAYIDX]], align 8
; CHECK-NEXT: indirectbr i8* [[NEWOP]], [label [[BB0]], label %bb1]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
%incdec.ptr = getelementptr inbounds i32, i32* %p, i64 1
%initop = load i32, i32* %incdec.ptr, align 4
switch i32 %initop, label %exit [
i32 0, label %bb0
i32 1, label %bb1
]
bb0:
tail call void @use(i32 0)
br label %indirectgoto
bb1:
tail call void @use(i32 1)
br label %indirectgoto
indirectgoto:
%newp = load i32, i32* %incdec.ptr, align 4
%idx = sext i32 %newp to i64
%arrayidx = getelementptr inbounds [2 x i8*], [2 x i8*]* @nophi.targets, i64 0, i64 %idx
%newop = load i8*, i8** %arrayidx, align 8
indirectbr i8* %newop, [label %bb0, label %bb1]
exit:
ret void
}