Add a RegisterTuples class to Target.td and TableGen.

A RegisterTuples instance is used to synthesize super-registers by
zipping together lists of sub-registers. This is useful for generating
pseudo-registers representing register sequence constraints like 'two
consecutive GPRs', or 'an even-odd pair of floating point registers'.

The RegisterTuples def can be used in register set operations when
building register classes. That is the only way of accessing the
synthesized super-registers.

For example, the ARM QQ register class of pseudo-registers could have
been formed like this:

  // Form pairs Q0_Q1, Q2_Q3, ...
  def QQPairs : RegisterTuples<[qsub_0, qsub_1],
                               [(decimate QPR, 2),
                                (decimate (shl QPR, 1), 2)]>;

  def QQ : RegisterClass<..., (add QQPairs)>;

Similarly, pseudo-registers representing '3 consecutive D-regs with
wraparound' look like:

  // Form D0_D1_D2, D1_D2_D3, ..., D30_D31_D0, D31_D0_D1.
  def DSeqTriples : RegisterTuples<[dsub_0, dsub_1, dsub_2],
                                   [(rotl DPR, 0),
                                    (rotl DPR, 1),
                                    (rotl DPR, 2)]>;

TableGen automatically computes aliasing information for the synthesized
registers.

Register tuples are still somewhat experimental. We still need to see
how they interact with MC.

llvm-svn: 133407
This commit is contained in:
Jakob Stoklund Olesen 2011-06-20 02:50:54 +00:00
parent dceb0cf3f3
commit 3bd1b65ed3
2 changed files with 146 additions and 1 deletions

View File

@ -184,6 +184,43 @@ class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
def sequence;
def decimate;
// RegisterTuples - Automatically generate super-registers by forming tuples of
// sub-registers. This is useful for modeling register sequence constraints
// with pseudo-registers that are larger than the architectural registers.
//
// The sub-register lists are zipped together:
//
// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
//
// Generates the same registers as:
//
// let SubRegIndices = [sube, subo] in {
// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
// }
//
// The generated pseudo-registers inherit super-classes and fields from their
// first sub-register. Most fields from the Register class are inferred, and
// the AsmName and Dwarf numbers are cleared.
//
// RegisterTuples instances can be used in other set operations to form
// register classes and so on. This is the only way of using the generated
// registers.
class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
// SubRegs - N lists of registers to be zipped up. Super-registers are
// synthesized from the first element of each SubRegs list, the second
// element and so on.
list<dag> SubRegs = Regs;
// SubRegIndices - N SubRegIndex instances. This provides the names of the
// sub-registers in the synthesized super-registers.
list<SubRegIndex> SubRegIndices = Indices;
// Compose sub-register indices like in a normal Register.
list<dag> CompositeIndices = [];
}
//===----------------------------------------------------------------------===//
// DwarfRegNum - This class provides a mapping of the llvm register enumeration
// to the register numbering used by gcc and gdb. These values are used by a

View File

@ -150,6 +150,104 @@ CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const {
}
}
//===----------------------------------------------------------------------===//
// RegisterTuples
//===----------------------------------------------------------------------===//
// A RegisterTuples def is used to generate pseudo-registers from lists of
// sub-registers. We provide a SetTheory expander class that returns the new
// registers.
namespace {
struct TupleExpander : SetTheory::Expander {
void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
unsigned Dim = Indices.size();
ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
if (Dim != SubRegs->getSize())
throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
if (Dim < 2)
throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
// Evaluate the sub-register lists to be zipped.
unsigned Length = ~0u;
SmallVector<SetTheory::RecSet, 4> Lists(Dim);
for (unsigned i = 0; i != Dim; ++i) {
ST.evaluate(SubRegs->getElement(i), Lists[i]);
Length = std::min(Length, unsigned(Lists[i].size()));
}
if (Length == 0)
return;
// Precompute some types.
Record *RegisterCl = Def->getRecords().getClass("Register");
RecTy *RegisterRecTy = new RecordRecTy(RegisterCl);
StringInit *BlankName = new StringInit("");
// Zip them up.
for (unsigned n = 0; n != Length; ++n) {
std::string Name;
Record *Proto = Lists[0][n];
std::vector<Init*> Tuple;
unsigned CostPerUse = 0;
for (unsigned i = 0; i != Dim; ++i) {
Record *Reg = Lists[i][n];
if (i) Name += '_';
Name += Reg->getName();
Tuple.push_back(new DefInit(Reg));
CostPerUse = std::max(CostPerUse,
unsigned(Reg->getValueAsInt("CostPerUse")));
}
// Create a new Record representing the synthesized register. This record
// is only for consumption by CodeGenRegister, it is not added to the
// RecordKeeper.
Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
Elts.insert(NewReg);
// Copy Proto super-classes.
for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
NewReg->addSuperClass(Proto->getSuperClasses()[i]);
// Copy Proto fields.
for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
RecordVal RV = Proto->getValues()[i];
// Replace the sub-register list with Tuple.
if (RV.getName() == "SubRegs")
RV.setValue(new ListInit(Tuple, RegisterRecTy));
// Provide a blank AsmName. MC hacks are required anyway.
if (RV.getName() == "AsmName")
RV.setValue(BlankName);
// CostPerUse is aggregated from all Tuple members.
if (RV.getName() == "CostPerUse")
RV.setValue(new IntInit(CostPerUse));
// Copy fields from the RegisterTuples def.
if (RV.getName() == "SubRegIndices" ||
RV.getName() == "CompositeIndices") {
NewReg->addValue(*Def->getValue(RV.getName()));
continue;
}
// Some fields get their default uninitialized value.
if (RV.getName() == "DwarfNumbers" ||
RV.getName() == "DwarfAlias" ||
RV.getName() == "Aliases") {
NewReg->addValue(*RegisterCl->getValue(RV.getName()));
continue;
}
// Everything else is copied from Proto.
NewReg->addValue(RV);
}
}
}
};
}
//===----------------------------------------------------------------------===//
// CodeGenRegisterClass
//===----------------------------------------------------------------------===//
@ -258,8 +356,9 @@ const std::string &CodeGenRegisterClass::getName() const {
//===----------------------------------------------------------------------===//
CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
// Configure register Sets to understand register classes.
// Configure register Sets to understand register classes and tuples.
Sets.addFieldExpander("RegisterClass", "MemberList");
Sets.addExpander("RegisterTuples", new TupleExpander());
// Read in the user-defined (named) sub-register indices.
// More indices will be synthesized later.
@ -275,6 +374,15 @@ CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
getReg(Regs[i]);
// Expand tuples and number the new registers.
std::vector<Record*> Tups =
Records.getAllDerivedDefinitions("RegisterTuples");
for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
getReg((*TupRegs)[j]);
}
// Read in register class definitions.
std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
if (RCs.empty())