Refactor the AsmParser to follow the pattern established in the parser:

there is now an explicit state class - which only has one instance per top
level FooThing::print call.  The FunctionPrinter's now subclass ModulePrinter
so they can just call print on their types and other global stuff.  This also
makes the contract strict that the global FooThing::print calls are the public
entrypoints and that the printer implementation is otherwise self contained.

No Functionality Change.

PiperOrigin-RevId: 205409317
This commit is contained in:
Chris Lattner 2018-07-20 09:35:47 -07:00 committed by jpienaar
parent a798b021f9
commit 3b7b3302c7
4 changed files with 274 additions and 279 deletions

View File

@ -105,8 +105,6 @@ public:
return expr->getKind() <= Kind::LAST_AFFINE_BINARY_OP;
}
void print(raw_ostream &os) const;
protected:
explicit AffineBinaryOpExpr(Kind kind, AffineExpr *lhs, AffineExpr *rhs);
@ -143,7 +141,6 @@ public:
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::DimId;
}
void print(raw_ostream &os) const;
private:
explicit AffineDimExpr(unsigned position)
@ -168,7 +165,6 @@ public:
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::SymbolId;
}
void print(raw_ostream &os) const;
private:
explicit AffineSymbolExpr(unsigned position)
@ -189,7 +185,6 @@ public:
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::Constant;
}
void print(raw_ostream &os) const;
private:
explicit AffineConstantExpr(int64_t constant)

View File

@ -74,8 +74,6 @@ public:
static bool classof(const Function *func) {
return func->getKind() == Kind::ExtFunc;
}
void print(raw_ostream &os) const;
};

View File

@ -44,8 +44,6 @@ public:
static bool classof(const StmtBlock *block) {
return block->getStmtBlockKind() == StmtBlockKind::MLFunc;
}
void print(raw_ostream &os) const;
};
} // end namespace mlir

View File

@ -38,37 +38,23 @@ void Identifier::print(raw_ostream &os) const { os << str(); }
void Identifier::dump() const { print(llvm::errs()); }
template <typename Container, typename UnaryFunctor>
inline void interleaveComma(raw_ostream &os, const Container &c,
UnaryFunctor each_fn) {
interleave(c.begin(), c.end(), each_fn, [&]() { os << ", "; });
}
//===----------------------------------------------------------------------===//
// Module printing
// ModuleState
//===----------------------------------------------------------------------===//
namespace {
class ModuleState {
public:
ModuleState(raw_ostream &os);
/// This is the operation set for the current context if it is knowable (a
/// context could be determined), otherwise this is null.
OperationSet *const operationSet;
explicit ModuleState(MLIRContext *context)
: operationSet(context ? &OperationSet::get(context) : nullptr) {}
// Initializes module state, populating affine map state.
void initialize(const Module *module);
void print(const Module *module);
void print(const Attribute *attr) const;
void print(const Type *type) const;
void print(const Function *fn);
void print(const ExtFunction *fn);
void print(const CFGFunction *fn);
void print(const MLFunction *fn);
void recordAffineMapReference(const AffineMap *affineMap) {
if (affineMapIds.count(affineMap) == 0) {
affineMapIds[affineMap] = nextAffineMapId++;
}
}
int getAffineMapId(const AffineMap *affineMap) const {
auto it = affineMapIds.find(affineMap);
if (it == affineMapIds.end()) {
@ -77,7 +63,17 @@ public:
return it->second;
}
const DenseMap<const AffineMap *, int> &getAffineMapIds() const {
return affineMapIds;
}
private:
void recordAffineMapReference(const AffineMap *affineMap) {
if (affineMapIds.count(affineMap) == 0) {
affineMapIds[affineMap] = nextAffineMapId++;
}
}
// Visit functions.
void visitFunction(const Function *fn);
void visitExtFunction(const ExtFunction *fn);
@ -87,23 +83,11 @@ private:
void visitAttribute(const Attribute *attr);
void visitOperation(const Operation *op);
void printAffineMapId(int affineMapId) const;
void printAffineMapReference(const AffineMap* affineMap) const;
raw_ostream &os;
DenseMap<const AffineMap *, int> affineMapIds;
int nextAffineMapId = 0;
};
} // end anonymous namespace
ModuleState::ModuleState(raw_ostream &os) : os(os) {}
// Initializes module state, populating affine map state.
void ModuleState::initialize(const Module *module) {
for (auto fn : module->functionList) {
visitFunction(fn);
}
}
// TODO Support visiting other types/instructions when implemented.
void ModuleState::visitType(const Type *type) {
@ -171,8 +155,54 @@ void ModuleState::visitFunction(const Function *fn) {
}
}
// Initializes module state, populating affine map state.
void ModuleState::initialize(const Module *module) {
for (auto fn : module->functionList) {
visitFunction(fn);
}
}
//===----------------------------------------------------------------------===//
// ModulePrinter
//===----------------------------------------------------------------------===//
namespace {
class ModulePrinter {
public:
ModulePrinter(raw_ostream &os, ModuleState &state) : os(os), state(state) {}
explicit ModulePrinter(const ModulePrinter &printer)
: os(printer.os), state(printer.state) {}
template <typename Container, typename UnaryFunctor>
inline void interleaveComma(const Container &c, UnaryFunctor each_fn) const {
interleave(c.begin(), c.end(), each_fn, [&]() { os << ", "; });
}
void print(const Module *module);
void print(const Attribute *attr) const;
void print(const Type *type) const;
void print(const Function *fn);
void print(const ExtFunction *fn);
void print(const CFGFunction *fn);
void print(const MLFunction *fn);
void print(const AffineMap *map);
void print(const AffineExpr *expr) const;
protected:
raw_ostream &os;
ModuleState &state;
void printFunctionSignature(const Function *fn);
void printAffineMapId(int affineMapId) const;
void printAffineMapReference(const AffineMap *affineMap) const;
void print(const AffineBinaryOpExpr *expr) const;
};
} // end anonymous namespace
// Prints function with initialized module state.
void ModuleState::print(const Function *fn) {
void ModulePrinter::print(const Function *fn) {
switch (fn->getKind()) {
case Function::Kind::ExtFunc:
return print(cast<ExtFunction>(fn));
@ -184,12 +214,12 @@ void ModuleState::print(const Function *fn) {
}
// Prints affine map identifier.
void ModuleState::printAffineMapId(int affineMapId) const {
void ModulePrinter::printAffineMapId(int affineMapId) const {
os << "#map" << affineMapId;
}
void ModuleState::printAffineMapReference(const AffineMap* affineMap) const {
const int mapId = getAffineMapId(affineMap);
void ModulePrinter::printAffineMapReference(const AffineMap *affineMap) const {
int mapId = state.getAffineMapId(affineMap);
if (mapId >= 0) {
// Map will be printed at top of module so print reference to its id.
printAffineMapId(mapId);
@ -199,8 +229,8 @@ void ModuleState::printAffineMapReference(const AffineMap* affineMap) const {
}
}
void ModuleState::print(const Module *module) {
for (const auto &mapAndId : affineMapIds) {
void ModulePrinter::print(const Module *module) {
for (const auto &mapAndId : state.getAffineMapIds()) {
printAffineMapId(mapAndId.second);
os << " = ";
mapAndId.first->print(os);
@ -209,7 +239,7 @@ void ModuleState::print(const Module *module) {
for (auto *fn : module->functionList) print(fn);
}
void ModuleState::print(const Attribute *attr) const {
void ModulePrinter::print(const Attribute *attr) const {
switch (attr->getKind()) {
case Attribute::Kind::Bool:
os << (cast<BoolAttr>(attr)->getValue() ? "true" : "false");
@ -228,7 +258,7 @@ void ModuleState::print(const Attribute *attr) const {
case Attribute::Kind::Array: {
auto elts = cast<ArrayAttr>(attr)->getValue();
os << '[';
interleaveComma(os, elts, [&](Attribute *attr) { print(attr); });
interleaveComma(elts, [&](Attribute *attr) { print(attr); });
os << ']';
break;
}
@ -238,7 +268,7 @@ void ModuleState::print(const Attribute *attr) const {
}
}
void ModuleState::print(const Type *type) const {
void ModulePrinter::print(const Type *type) const {
switch (type->getKind()) {
case Type::Kind::AffineInt:
os << "affineint";
@ -264,14 +294,14 @@ void ModuleState::print(const Type *type) const {
case Type::Kind::Function: {
auto *func = cast<FunctionType>(type);
os << '(';
interleaveComma(os, func->getInputs(), [&](Type *type) { os << *type; });
interleaveComma(func->getInputs(), [&](Type *type) { os << *type; });
os << ") -> ";
auto results = func->getResults();
if (results.size() == 1)
os << *results[0];
else {
os << '(';
interleaveComma(os, results, [&](Type *type) { os << *type; });
interleaveComma(results, [&](Type *type) { os << *type; });
os << ')';
}
return;
@ -323,18 +353,133 @@ void ModuleState::print(const Type *type) const {
}
}
//===----------------------------------------------------------------------===//
// Affine expressions and maps
//===----------------------------------------------------------------------===//
void ModulePrinter::print(const AffineExpr *expr) const {
switch (expr->getKind()) {
case AffineExpr::Kind::SymbolId:
os << 's' << cast<AffineSymbolExpr>(expr)->getPosition();
return;
case AffineExpr::Kind::DimId:
os << 'd' << cast<AffineDimExpr>(expr)->getPosition();
return;
case AffineExpr::Kind::Constant:
os << cast<AffineConstantExpr>(expr)->getValue();
return;
case AffineExpr::Kind::Add:
case AffineExpr::Kind::Mul:
case AffineExpr::Kind::FloorDiv:
case AffineExpr::Kind::CeilDiv:
case AffineExpr::Kind::Mod:
return print(cast<AffineBinaryOpExpr>(expr));
}
}
void ModulePrinter::print(const AffineBinaryOpExpr *expr) const {
if (expr->getKind() != AffineExpr::Kind::Add) {
os << '(';
print(expr->getLHS());
switch (expr->getKind()) {
case AffineExpr::Kind::Mul:
os << " * ";
break;
case AffineExpr::Kind::FloorDiv:
os << " floordiv ";
break;
case AffineExpr::Kind::CeilDiv:
os << " ceildiv ";
break;
case AffineExpr::Kind::Mod:
os << " mod ";
break;
default:
llvm_unreachable("unexpected affine binary op expression");
}
print(expr->getRHS());
os << ')';
return;
}
// Print out special "pretty" forms for add.
os << '(';
print(expr->getLHS());
// Pretty print addition to a product that has a negative operand as a
// subtraction.
if (auto *rhs = dyn_cast<AffineBinaryOpExpr>(expr->getRHS())) {
if (rhs->getKind() == AffineExpr::Kind::Mul) {
if (auto *rrhs = dyn_cast<AffineConstantExpr>(rhs->getRHS())) {
if (rrhs->getValue() < 0) {
os << " - (";
print(rhs->getLHS());
os << " * " << -rrhs->getValue() << "))";
return;
}
}
}
}
// Pretty print addition to a negative number as a subtraction.
if (auto *rhs = dyn_cast<AffineConstantExpr>(expr->getRHS())) {
if (rhs->getValue() < 0) {
os << " - " << -rhs->getValue() << ")";
return;
}
}
os << " + ";
print(expr->getRHS());
os << ')';
}
void ModulePrinter::print(const AffineMap *map) {
// Dimension identifiers.
os << '(';
for (int i = 0; i < (int)map->getNumDims() - 1; i++)
os << "d" << i << ", ";
if (map->getNumDims() >= 1)
os << "d" << map->getNumDims() - 1;
os << ")";
// Symbolic identifiers.
if (map->getNumSymbols() >= 1) {
os << " [";
for (int i = 0; i < (int)map->getNumSymbols() - 1; i++)
os << "s" << i << ", ";
if (map->getNumSymbols() >= 1)
os << "s" << map->getNumSymbols() - 1;
os << "]";
}
// AffineMap should have at least one result.
assert(!map->getResults().empty());
// Result affine expressions.
os << " -> (";
interleaveComma(map->getResults(), [&](AffineExpr *expr) { print(expr); });
os << ")";
if (!map->isBounded()) {
return;
}
// Print range sizes for bounded affine maps.
os << " size (";
interleaveComma(map->getRangeSizes(), [&](AffineExpr *expr) { print(expr); });
os << ")";
}
//===----------------------------------------------------------------------===//
// Function printing
//===----------------------------------------------------------------------===//
static void printFunctionSignature(const Function *fn,
const ModuleState *moduleState,
raw_ostream &os) {
void ModulePrinter::printFunctionSignature(const Function *fn) {
auto type = fn->getType();
os << "@" << fn->getName() << '(';
interleaveComma(os, type->getInputs(),
[&](Type *eltType) { moduleState->print(eltType); });
interleaveComma(type->getInputs(), [&](Type *eltType) { print(eltType); });
os << ')';
switch (type->getResults().size()) {
@ -342,20 +487,19 @@ static void printFunctionSignature(const Function *fn,
break;
case 1:
os << " -> ";
moduleState->print(type->getResults()[0]);
print(type->getResults()[0]);
break;
default:
os << " -> (";
interleaveComma(os, type->getResults(),
[&](Type *eltType) { moduleState->print(eltType); });
interleaveComma(type->getResults(), [&](Type *eltType) { print(eltType); });
os << ')';
break;
}
}
void ModuleState::print(const ExtFunction *fn) {
void ModulePrinter::print(const ExtFunction *fn) {
os << "extfunc ";
printFunctionSignature(fn, this, os);
printFunctionSignature(fn);
os << '\n';
}
@ -363,18 +507,13 @@ namespace {
// FunctionState contains common functionality for printing
// CFG and ML functions.
class FunctionState {
class FunctionState : public ModulePrinter {
public:
FunctionState(MLIRContext *context, const ModuleState *moduleState,
raw_ostream &os);
FunctionState(const ModulePrinter &other) : ModulePrinter(other) {}
void printOperation(const Operation *op);
protected:
raw_ostream &os;
const ModuleState *moduleState;
const OperationSet &operationSet;
void numberValueID(const SSAValue *value) {
assert(!valueIDs.count(value) && "Value numbered multiple times");
valueIDs[value] = nextValueID++;
@ -397,12 +536,6 @@ private:
};
} // end anonymous namespace
FunctionState::FunctionState(MLIRContext *context,
const ModuleState *moduleState, raw_ostream &os)
: os(os),
moduleState(moduleState),
operationSet(OperationSet::get(context)) {}
void FunctionState::printOperation(const Operation *op) {
os << " ";
@ -417,7 +550,7 @@ void FunctionState::printOperation(const Operation *op) {
// Check to see if this is a known operation. If so, use the registered
// custom printer hook.
if (auto opInfo = operationSet.lookup(op->getName().str())) {
if (auto opInfo = state.operationSet->lookup(op->getName().str())) {
opInfo->printAssembly(op, os);
return;
}
@ -431,18 +564,18 @@ void FunctionState::printOperation(const Operation *op) {
// Operation this check can go away.
if (auto *inst = dyn_cast<OperationInst>(op)) {
// TODO: Use getOperands() when we have it.
interleaveComma(
os, inst->getInstOperands(),
[&](const InstOperand &operand) { printValueID(operand.get()); });
interleaveComma(inst->getInstOperands(), [&](const InstOperand &operand) {
printValueID(operand.get());
});
}
os << ')';
auto attrs = op->getAttrs();
if (!attrs.empty()) {
os << '{';
interleaveComma(os, attrs, [&](NamedAttribute attr) {
interleaveComma(attrs, [&](NamedAttribute attr) {
os << attr.first << ": ";
moduleState->print(attr.second);
print(attr.second);
});
os << '}';
}
@ -453,20 +586,18 @@ void FunctionState::printOperation(const Operation *op) {
// Print the type signature of the operation.
os << " : (";
// TODO: Switch to getOperands() when we have it.
interleaveComma(os, inst->getInstOperands(), [&](const InstOperand &op) {
moduleState->print(op.get()->getType());
});
interleaveComma(inst->getInstOperands(),
[&](const InstOperand &op) { print(op.get()->getType()); });
os << ") -> ";
// TODO: Switch to getResults() when we have it.
if (inst->getNumResults() == 1) {
moduleState->print(inst->getInstResult(0).getType());
print(inst->getInstResult(0).getType());
} else {
os << '(';
interleaveComma(os, inst->getInstResults(),
[&](const InstResult &result) {
moduleState->print(result.getType());
});
interleaveComma(inst->getInstResults(), [&](const InstResult &result) {
print(result.getType());
});
os << ')';
}
}
@ -477,10 +608,9 @@ void FunctionState::printOperation(const Operation *op) {
//===----------------------------------------------------------------------===//
namespace {
class CFGFunctionState : public FunctionState {
class CFGFunctionPrinter : public FunctionState {
public:
CFGFunctionState(const CFGFunction *function, const ModuleState *moduleState,
raw_ostream &os);
CFGFunctionPrinter(const CFGFunction *function, const ModulePrinter &other);
const CFGFunction *getFunction() const { return function; }
@ -502,25 +632,23 @@ private:
const CFGFunction *function;
DenseMap<const BasicBlock *, unsigned> basicBlockIDs;
void numberBlock(const BasicBlock *block);
void numberValuesInBlock(const BasicBlock *block);
};
} // end anonymous namespace
CFGFunctionState::CFGFunctionState(const CFGFunction *function,
const ModuleState *moduleState,
raw_ostream &os)
: FunctionState(function->getContext(), moduleState, os),
function(function) {
CFGFunctionPrinter::CFGFunctionPrinter(const CFGFunction *function,
const ModulePrinter &other)
: FunctionState(other), function(function) {
// Each basic block gets a unique ID per function.
unsigned blockID = 0;
for (auto &block : *function) {
basicBlockIDs[&block] = blockID++;
numberBlock(&block);
numberValuesInBlock(&block);
}
}
/// Number all of the SSA values in the specified basic block.
void CFGFunctionState::numberBlock(const BasicBlock *block) {
void CFGFunctionPrinter::numberValuesInBlock(const BasicBlock *block) {
// TODO: basic block arguments.
for (auto &op : *block) {
// We number instruction that have results, and we only number the first
@ -532,16 +660,16 @@ void CFGFunctionState::numberBlock(const BasicBlock *block) {
// Terminators do not define values.
}
void CFGFunctionState::print() {
void CFGFunctionPrinter::print() {
os << "cfgfunc ";
printFunctionSignature(this->getFunction(), moduleState, os);
printFunctionSignature(getFunction());
os << " {\n";
for (auto &block : *function) print(&block);
os << "}\n\n";
}
void CFGFunctionState::print(const BasicBlock *block) {
void CFGFunctionPrinter::print(const BasicBlock *block) {
os << "bb" << getBBID(block) << ":\n";
// TODO Print arguments.
@ -554,7 +682,7 @@ void CFGFunctionState::print(const BasicBlock *block) {
os << "\n";
}
void CFGFunctionState::print(const Instruction *inst) {
void CFGFunctionPrinter::print(const Instruction *inst) {
switch (inst->getKind()) {
case Instruction::Kind::Operation:
return print(cast<OperationInst>(inst));
@ -565,17 +693,16 @@ void CFGFunctionState::print(const Instruction *inst) {
}
}
void CFGFunctionState::print(const OperationInst *inst) {
void CFGFunctionPrinter::print(const OperationInst *inst) {
printOperation(inst);
}
void CFGFunctionState::print(const BranchInst *inst) {
void CFGFunctionPrinter::print(const BranchInst *inst) {
os << " br bb" << getBBID(inst->getDest());
}
void CFGFunctionState::print(const ReturnInst *inst) { os << " return"; }
void CFGFunctionPrinter::print(const ReturnInst *inst) { os << " return"; }
void ModuleState::print(const CFGFunction *fn) {
CFGFunctionState state(fn, this, os);
state.print();
void ModulePrinter::print(const CFGFunction *fn) {
CFGFunctionPrinter(fn, *this).print();
}
//===----------------------------------------------------------------------===//
@ -583,10 +710,9 @@ void ModuleState::print(const CFGFunction *fn) {
//===----------------------------------------------------------------------===//
namespace {
class MLFunctionState : public FunctionState {
class MLFunctionPrinter : public FunctionState {
public:
MLFunctionState(const MLFunction *function, const ModuleState *moduleState,
raw_ostream &os);
MLFunctionPrinter(const MLFunction *function, const ModulePrinter &other);
const MLFunction *getFunction() const { return function; }
@ -609,24 +735,21 @@ private:
};
} // end anonymous namespace
MLFunctionState::MLFunctionState(const MLFunction *function,
const ModuleState *moduleState,
raw_ostream &os)
: FunctionState(function->getContext(), moduleState, os),
function(function),
numSpaces(0) {}
MLFunctionPrinter::MLFunctionPrinter(const MLFunction *function,
const ModulePrinter &other)
: FunctionState(other), function(function), numSpaces(0) {}
void MLFunctionState::print() {
void MLFunctionPrinter::print() {
os << "mlfunc ";
// FIXME: should print argument names rather than just signature
printFunctionSignature(function, moduleState, os);
printFunctionSignature(function);
os << " {\n";
print(function);
os << " return\n";
os << "}\n\n";
}
void MLFunctionState::print(const StmtBlock *block) {
void MLFunctionPrinter::print(const StmtBlock *block) {
numSpaces += indentWidth;
for (auto &stmt : block->getStatements()) {
print(&stmt);
@ -635,7 +758,7 @@ void MLFunctionState::print(const StmtBlock *block) {
numSpaces -= indentWidth;
}
void MLFunctionState::print(const Statement *stmt) {
void MLFunctionPrinter::print(const Statement *stmt) {
switch (stmt->getKind()) {
case Statement::Kind::Operation:
return print(cast<OperationStmt>(stmt));
@ -646,9 +769,11 @@ void MLFunctionState::print(const Statement *stmt) {
}
}
void MLFunctionState::print(const OperationStmt *stmt) { printOperation(stmt); }
void MLFunctionPrinter::print(const OperationStmt *stmt) {
printOperation(stmt);
}
void MLFunctionState::print(const ForStmt *stmt) {
void MLFunctionPrinter::print(const ForStmt *stmt) {
os.indent(numSpaces) << "for x = " << *stmt->getLowerBound();
os << " to " << *stmt->getUpperBound();
if (stmt->getStep()->getValue() != 1)
@ -659,7 +784,7 @@ void MLFunctionState::print(const ForStmt *stmt) {
os.indent(numSpaces) << "}";
}
void MLFunctionState::print(const IfStmt *stmt) {
void MLFunctionPrinter::print(const IfStmt *stmt) {
os.indent(numSpaces) << "if () {\n";
print(stmt->getThenClause());
os.indent(numSpaces) << "}";
@ -670,9 +795,8 @@ void MLFunctionState::print(const IfStmt *stmt) {
}
}
void ModuleState::print(const MLFunction *fn) {
MLFunctionState state(fn, this, os);
state.print();
void ModulePrinter::print(const MLFunction *fn) {
MLFunctionPrinter(fn, *this).print();
}
//===----------------------------------------------------------------------===//
@ -680,8 +804,8 @@ void ModuleState::print(const MLFunction *fn) {
//===----------------------------------------------------------------------===//
void Attribute::print(raw_ostream &os) const {
ModuleState moduleState(os);
moduleState.print(this);
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).print(this);
}
void Attribute::dump() const {
@ -689,23 +813,12 @@ void Attribute::dump() const {
}
void Type::print(raw_ostream &os) const {
ModuleState moduleState(os);
moduleState.print(this);
ModuleState state(getContext());
ModulePrinter(os, state).print(this);
}
void Type::dump() const { print(llvm::errs()); }
void Instruction::print(raw_ostream &os) const {
ModuleState moduleState(os);
CFGFunctionState state(getFunction(), &moduleState, os);
state.print(this);
}
void Instruction::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineMap::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
@ -716,163 +829,54 @@ void AffineExpr::dump() const {
llvm::errs() << "\n";
}
void AffineSymbolExpr::print(raw_ostream &os) const {
os << 's' << getPosition();
}
void AffineDimExpr::print(raw_ostream &os) const { os << 'd' << getPosition(); }
void AffineConstantExpr::print(raw_ostream &os) const { os << getValue(); }
static void printAdd(const AffineBinaryOpExpr *addExpr, raw_ostream &os) {
os << '(' << *addExpr->getLHS();
// Pretty print addition to a product that has a negative operand as a
// subtraction.
if (auto *rhs = dyn_cast<AffineBinaryOpExpr>(addExpr->getRHS())) {
if (rhs->getKind() == AffineExpr::Kind::Mul) {
if (auto *rrhs = dyn_cast<AffineConstantExpr>(rhs->getRHS())) {
if (rrhs->getValue() < 0) {
os << " - (" << *rhs->getLHS() << " * " << -rrhs->getValue() << "))";
return;
}
}
}
}
// Pretty print addition to a negative number as a subtraction.
if (auto *rhs = dyn_cast<AffineConstantExpr>(addExpr->getRHS())) {
if (rhs->getValue() < 0) {
os << " - " << -rhs->getValue() << ")";
return;
}
}
os << " + " << *addExpr->getRHS() << ")";
}
void AffineBinaryOpExpr::print(raw_ostream &os) const {
switch (getKind()) {
case Kind::Add:
return printAdd(this, os);
case Kind::Mul:
os << "(" << *getLHS() << " * " << *getRHS() << ")";
return;
case Kind::FloorDiv:
os << "(" << *getLHS() << " floordiv " << *getRHS() << ")";
return;
case Kind::CeilDiv:
os << "(" << *getLHS() << " ceildiv " << *getRHS() << ")";
return;
case Kind::Mod:
os << "(" << *getLHS() << " mod " << *getRHS() << ")";
return;
default:
llvm_unreachable("unexpected affine binary op expression");
}
}
void AffineExpr::print(raw_ostream &os) const {
switch (getKind()) {
case Kind::SymbolId:
return cast<AffineSymbolExpr>(this)->print(os);
case Kind::DimId:
return cast<AffineDimExpr>(this)->print(os);
case Kind::Constant:
return cast<AffineConstantExpr>(this)->print(os);
case Kind::Add:
case Kind::Mul:
case Kind::FloorDiv:
case Kind::CeilDiv:
case Kind::Mod:
return cast<AffineBinaryOpExpr>(this)->print(os);
}
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).print(this);
}
void AffineMap::print(raw_ostream &os) const {
// Dimension identifiers.
os << "(";
for (int i = 0; i < (int)getNumDims() - 1; i++) os << "d" << i << ", ";
if (getNumDims() >= 1) os << "d" << getNumDims() - 1;
os << ")";
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).print(this);
}
// Symbolic identifiers.
if (getNumSymbols() >= 1) {
os << " [";
for (int i = 0; i < (int)getNumSymbols() - 1; i++) os << "s" << i << ", ";
if (getNumSymbols() >= 1) os << "s" << getNumSymbols() - 1;
os << "]";
}
void Instruction::print(raw_ostream &os) const {
ModuleState state(getFunction()->getContext());
ModulePrinter modulePrinter(os, state);
CFGFunctionPrinter(getFunction(), modulePrinter).print(this);
}
// AffineMap should have at least one result.
assert(!getResults().empty());
// Result affine expressions.
os << " -> (";
interleaveComma(os, getResults(), [&](AffineExpr *expr) { os << *expr; });
os << ")";
if (!isBounded()) {
return;
}
// Print range sizes for bounded affine maps.
os << " size (";
interleaveComma(os, getRangeSizes(), [&](AffineExpr *expr) { os << *expr; });
os << ")";
void Instruction::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void BasicBlock::print(raw_ostream &os) const {
ModuleState moduleState(os);
CFGFunctionState state(getFunction(), &moduleState, os);
state.print();
ModuleState state(getFunction()->getContext());
ModulePrinter modulePrinter(os, state);
CFGFunctionPrinter(getFunction(), modulePrinter).print(this);
}
void BasicBlock::dump() const { print(llvm::errs()); }
void Statement::print(raw_ostream &os) const {
ModuleState moduleState(os);
MLFunctionState state(getFunction(), &moduleState, os);
state.print(this);
ModuleState state(getFunction()->getContext());
ModulePrinter modulePrinter(os, state);
MLFunctionPrinter(getFunction(), modulePrinter).print(this);
}
void Statement::dump() const { print(llvm::errs()); }
void Function::print(raw_ostream &os) const {
switch (getKind()) {
case Kind::ExtFunc:
return cast<ExtFunction>(this)->print(os);
case Kind::CFGFunc:
return cast<CFGFunction>(this)->print(os);
case Kind::MLFunc:
return cast<MLFunction>(this)->print(os);
}
ModuleState state(getContext());
ModulePrinter(os, state).print(this);
}
void Function::dump() const { print(llvm::errs()); }
void ExtFunction::print(raw_ostream &os) const {
ModuleState moduleState(os);
os << "extfunc ";
printFunctionSignature(this, &moduleState, os);
os << "\n";
}
void CFGFunction::print(raw_ostream &os) const {
ModuleState moduleState(os);
CFGFunctionState state(this, &moduleState, os);
state.print();
}
void MLFunction::print(raw_ostream &os) const {
ModuleState moduleState(os);
MLFunctionState state(this, &moduleState, os);
state.print();
}
void Module::print(raw_ostream &os) const {
ModuleState moduleState(os);
moduleState.initialize(this);
moduleState.print(this);
ModuleState state(getContext());
state.initialize(this);
ModulePrinter(os, state).print(this);
}
void Module::dump() const { print(llvm::errs()); }