forked from OSchip/llvm-project
[libc] Add implementation of hypot.
Refactor src/math/hypotf.cpp and test/src/math/hypotf_test.cpp and reuse them for hypot and hypot_test Differential Revision: https://reviews.llvm.org/D91831
This commit is contained in:
parent
c00516d520
commit
3b487d51e2
|
@ -68,6 +68,7 @@ set(TARGET_LIBM_ENTRYPOINTS
|
|||
libc.src.math.frexp
|
||||
libc.src.math.frexpf
|
||||
libc.src.math.frexpl
|
||||
libc.src.math.hypot
|
||||
libc.src.math.hypotf
|
||||
libc.src.math.ilogb
|
||||
libc.src.math.ilogbf
|
||||
|
|
|
@ -104,6 +104,7 @@ set(TARGET_LIBM_ENTRYPOINTS
|
|||
libc.src.math.frexp
|
||||
libc.src.math.frexpf
|
||||
libc.src.math.frexpl
|
||||
libc.src.math.hypot
|
||||
libc.src.math.hypotf
|
||||
libc.src.math.ilogb
|
||||
libc.src.math.ilogbf
|
||||
|
|
|
@ -280,6 +280,7 @@ def StdC : StandardSpec<"stdc"> {
|
|||
FunctionSpec<"frexpf", RetValSpec<FloatType>, [ArgSpec<FloatType>, ArgSpec<IntPtr>]>,
|
||||
FunctionSpec<"frexpl", RetValSpec<LongDoubleType>, [ArgSpec<LongDoubleType>, ArgSpec<IntPtr>]>,
|
||||
|
||||
FunctionSpec<"hypot", RetValSpec<DoubleType>, [ArgSpec<DoubleType>, ArgSpec<DoubleType>]>,
|
||||
FunctionSpec<"hypotf", RetValSpec<FloatType>, [ArgSpec<FloatType>, ArgSpec<FloatType>]>,
|
||||
|
||||
FunctionSpec<"ilogb", RetValSpec<IntType>, [ArgSpec<DoubleType>]>,
|
||||
|
|
|
@ -713,3 +713,15 @@ add_entrypoint_object(
|
|||
COMPILE_OPTIONS
|
||||
-O2
|
||||
)
|
||||
|
||||
add_entrypoint_object(
|
||||
hypot
|
||||
SRCS
|
||||
hypot.cpp
|
||||
HDRS
|
||||
hypot.h
|
||||
DEPENDS
|
||||
libc.utils.FPUtil.fputil
|
||||
COMPILE_OPTIONS
|
||||
-O2
|
||||
)
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
//===-- Implementation of hypot function ----------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "utils/FPUtil/Hypot.h"
|
||||
#include "src/__support/common.h"
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
double LLVM_LIBC_ENTRYPOINT(hypot)(double x, double y) {
|
||||
return __llvm_libc::fputil::hypot(x, y);
|
||||
}
|
||||
|
||||
} // namespace __llvm_libc
|
|
@ -0,0 +1,18 @@
|
|||
//===-- Implementation header for hypot -------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC_MATH_HYPOT_H
|
||||
#define LLVM_LIBC_SRC_MATH_HYPOT_H
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
double hypot(double x, double y);
|
||||
|
||||
} // namespace __llvm_libc
|
||||
|
||||
#endif // LLVM_LIBC_SRC_MATH_HYPOT_H
|
|
@ -6,217 +6,12 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#include "src/__support/common.h"
|
||||
#include "utils/FPUtil/BasicOperations.h"
|
||||
#include "utils/FPUtil/FPBits.h"
|
||||
#include "utils/FPUtil/Hypot.h"
|
||||
|
||||
namespace __llvm_libc {
|
||||
|
||||
using namespace fputil;
|
||||
|
||||
uint32_t findLeadingOne(uint32_t mant, int &shift_length) {
|
||||
shift_length = 0;
|
||||
constexpr int nsteps = 5;
|
||||
constexpr uint32_t bounds[nsteps] = {1 << 16, 1 << 8, 1 << 4, 1 << 2, 1 << 1};
|
||||
constexpr int shifts[nsteps] = {16, 8, 4, 2, 1};
|
||||
for (int i = 0; i < nsteps; ++i) {
|
||||
if (mant >= bounds[i]) {
|
||||
shift_length += shifts[i];
|
||||
mant >>= shifts[i];
|
||||
}
|
||||
}
|
||||
return 1U << shift_length;
|
||||
}
|
||||
|
||||
// Correctly rounded IEEE 754 HYPOT(x, y) with round to nearest, ties to even.
|
||||
//
|
||||
// Algorithm:
|
||||
// - Let a = max(|x|, |y|), b = min(|x|, |y|), then we have that:
|
||||
// a <= sqrt(a^2 + b^2) <= min(a + b, a*sqrt(2))
|
||||
// 1. So if b < eps(a)/2, then HYPOT(x, y) = a.
|
||||
//
|
||||
// - Moreover, the exponent part of HYPOT(x, y) is either the same or 1 more
|
||||
// than the exponent part of a.
|
||||
//
|
||||
// 2. For the remaining cases, we will use the digit-by-digit (shift-and-add)
|
||||
// algorithm to compute SQRT(Z):
|
||||
//
|
||||
// - For Y = y0.y1...yn... = SQRT(Z),
|
||||
// let Y(n) = y0.y1...yn be the first n fractional digits of Y.
|
||||
//
|
||||
// - The nth scaled residual R(n) is defined to be:
|
||||
// R(n) = 2^n * (Z - Y(n)^2)
|
||||
//
|
||||
// - Since Y(n) = Y(n - 1) + yn * 2^(-n), the scaled residual
|
||||
// satisfies the following recurrence formula:
|
||||
// R(n) = 2*R(n - 1) - yn*(2*Y(n - 1) + 2^(-n)),
|
||||
// with the initial conditions:
|
||||
// Y(0) = y0, and R(0) = Z - y0.
|
||||
//
|
||||
// - So the nth fractional digit of Y = SQRT(Z) can be decided by:
|
||||
// yn = 1 if 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n),
|
||||
// 0 otherwise.
|
||||
//
|
||||
// 3. Precision analysis:
|
||||
//
|
||||
// - Notice that in the decision function:
|
||||
// 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n),
|
||||
// the right hand side only uses up to the 2^(-n)-bit, and both sides are
|
||||
// non-negative, so R(n - 1) can be truncated at the 2^(-(n + 1))-bit, so
|
||||
// that 2*R(n - 1) is corrected up to the 2^(-n)-bit.
|
||||
//
|
||||
// - Thus, in order to round SQRT(a^2 + b^2) correctly up to n-fractional
|
||||
// bits, we need to perform the summation (a^2 + b^2) correctly up to (2n +
|
||||
// 2)-fractional bits, and the remaining bits are sticky bits (i.e. we only
|
||||
// care if they are 0 or > 0), and the comparisons, additions/subtractions
|
||||
// can be done in n-fractional bits precision.
|
||||
//
|
||||
// - For single precision (float), we can use uint64_t to store the sum a^2 +
|
||||
// b^2 exact up to (2n + 2)-fractional bits.
|
||||
//
|
||||
// - Then we can feed this sum into the digit-by-digit algorithm for SQRT(Z)
|
||||
// described above.
|
||||
//
|
||||
//
|
||||
// Special cases:
|
||||
// - HYPOT(x, y) is +Inf if x or y is +Inf or -Inf; else
|
||||
// - HYPOT(x, y) is NaN if x or y is NaN.
|
||||
//
|
||||
float LLVM_LIBC_ENTRYPOINT(hypotf)(float x, float y) {
|
||||
FPBits<float> x_bits(x), y_bits(y);
|
||||
|
||||
if (x_bits.isInf() || y_bits.isInf()) {
|
||||
return FPBits<float>::inf();
|
||||
}
|
||||
if (x_bits.isNaN()) {
|
||||
return x;
|
||||
}
|
||||
if (y_bits.isNaN()) {
|
||||
return y;
|
||||
}
|
||||
|
||||
uint16_t a_exp, b_exp, out_exp;
|
||||
uint32_t a_mant, b_mant;
|
||||
uint64_t a_mant_sq, b_mant_sq;
|
||||
bool sticky_bits;
|
||||
|
||||
if ((x_bits.exponent >= y_bits.exponent + MantissaWidth<float>::value + 2) ||
|
||||
(y == 0)) {
|
||||
return abs(x);
|
||||
} else if ((y_bits.exponent >=
|
||||
x_bits.exponent + MantissaWidth<float>::value + 2) ||
|
||||
(x == 0)) {
|
||||
y_bits.sign = 0;
|
||||
return abs(y);
|
||||
}
|
||||
|
||||
if (x >= y) {
|
||||
a_exp = x_bits.exponent;
|
||||
a_mant = x_bits.mantissa;
|
||||
b_exp = y_bits.exponent;
|
||||
b_mant = y_bits.mantissa;
|
||||
} else {
|
||||
a_exp = y_bits.exponent;
|
||||
a_mant = y_bits.mantissa;
|
||||
b_exp = x_bits.exponent;
|
||||
b_mant = x_bits.mantissa;
|
||||
}
|
||||
|
||||
out_exp = a_exp;
|
||||
|
||||
// Add an extra bit to simplify the final rounding bit computation.
|
||||
constexpr uint32_t one = 1U << (MantissaWidth<float>::value + 1);
|
||||
|
||||
a_mant <<= 1;
|
||||
b_mant <<= 1;
|
||||
|
||||
uint32_t leading_one;
|
||||
int y_mant_width;
|
||||
if (a_exp != 0) {
|
||||
leading_one = one;
|
||||
a_mant |= one;
|
||||
y_mant_width = MantissaWidth<float>::value + 1;
|
||||
} else {
|
||||
leading_one = findLeadingOne(a_mant, y_mant_width);
|
||||
}
|
||||
|
||||
if (b_exp != 0) {
|
||||
b_mant |= one;
|
||||
}
|
||||
|
||||
a_mant_sq = static_cast<uint64_t>(a_mant) * a_mant;
|
||||
b_mant_sq = static_cast<uint64_t>(b_mant) * b_mant;
|
||||
|
||||
// At this point, a_exp >= b_exp > a_exp - 25, so in order to line up aSqMant
|
||||
// and bSqMant, we need to shift bSqMant to the right by (a_exp - b_exp) bits.
|
||||
// But before that, remember to store the losing bits to sticky.
|
||||
// The shift length is for a^2 and b^2, so it's double of the exponent
|
||||
// difference between a and b.
|
||||
uint16_t shift_length = 2 * (a_exp - b_exp);
|
||||
sticky_bits = ((b_mant_sq & ((1ULL << shift_length) - 1)) != 0);
|
||||
b_mant_sq >>= shift_length;
|
||||
|
||||
uint64_t sum = a_mant_sq + b_mant_sq;
|
||||
if (sum >= (1ULL << (2 * y_mant_width + 2))) {
|
||||
// a^2 + b^2 >= 4* leading_one^2, so we will need an extra bit to the left.
|
||||
if (leading_one == one) {
|
||||
// For normal result, we discard the last 2 bits of the sum and increase
|
||||
// the exponent.
|
||||
sticky_bits = sticky_bits || ((sum & 0x3U) != 0);
|
||||
sum >>= 2;
|
||||
++out_exp;
|
||||
if (out_exp >= FPBits<float>::maxExponent) {
|
||||
return FPBits<float>::inf();
|
||||
}
|
||||
} else {
|
||||
// For denormal result, we simply move the leading bit of the result to
|
||||
// the left by 1.
|
||||
leading_one <<= 1;
|
||||
++y_mant_width;
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t Y = leading_one;
|
||||
uint32_t R = static_cast<uint32_t>(sum >> y_mant_width) - leading_one;
|
||||
uint32_t tailBits = static_cast<uint32_t>(sum) & (leading_one - 1);
|
||||
|
||||
for (uint32_t current_bit = leading_one >> 1; current_bit;
|
||||
current_bit >>= 1) {
|
||||
R = (R << 1) + ((tailBits & current_bit) ? 1 : 0);
|
||||
uint32_t tmp = (Y << 1) + current_bit; // 2*y(n - 1) + 2^(-n)
|
||||
if (R >= tmp) {
|
||||
R -= tmp;
|
||||
Y += current_bit;
|
||||
}
|
||||
}
|
||||
|
||||
bool round_bit = Y & 1U;
|
||||
bool lsb = Y & 2U;
|
||||
|
||||
if (Y >= one) {
|
||||
Y -= one;
|
||||
|
||||
if (out_exp == 0) {
|
||||
out_exp = 1;
|
||||
}
|
||||
}
|
||||
|
||||
Y >>= 1;
|
||||
|
||||
// Round to the nearest, tie to even.
|
||||
if (round_bit && (lsb || sticky_bits || (R != 0))) {
|
||||
++Y;
|
||||
}
|
||||
|
||||
if (Y >= (one >> 1)) {
|
||||
Y -= one >> 1;
|
||||
++out_exp;
|
||||
if (out_exp >= FPBits<float>::maxExponent) {
|
||||
return FPBits<float>::inf();
|
||||
}
|
||||
}
|
||||
|
||||
Y |= static_cast<uint32_t>(out_exp) << MantissaWidth<float>::value;
|
||||
return *reinterpret_cast<float *>(&Y);
|
||||
return __llvm_libc::fputil::hypot(x, y);
|
||||
}
|
||||
|
||||
} // namespace __llvm_libc
|
||||
|
|
|
@ -736,3 +736,16 @@ add_fp_unittest(
|
|||
libc.src.math.hypotf
|
||||
libc.utils.FPUtil.fputil
|
||||
)
|
||||
|
||||
add_fp_unittest(
|
||||
hypot_test
|
||||
NEED_MPFR
|
||||
SUITE
|
||||
libc_math_unittests
|
||||
SRCS
|
||||
hypot_test.cpp
|
||||
DEPENDS
|
||||
libc.include.math
|
||||
libc.src.math.hypot
|
||||
libc.utils.FPUtil.fputil
|
||||
)
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
//===-- Utility class to test different flavors of hypot ------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_TEST_SRC_MATH_HYPOTTEST_H
|
||||
#define LLVM_LIBC_TEST_SRC_MATH_HYPOTTEST_H
|
||||
|
||||
#include "include/math.h"
|
||||
#include "utils/FPUtil/FPBits.h"
|
||||
#include "utils/FPUtil/Hypot.h"
|
||||
#include "utils/FPUtil/TestHelpers.h"
|
||||
#include "utils/MPFRWrapper/MPFRUtils.h"
|
||||
#include "utils/UnitTest/Test.h"
|
||||
|
||||
namespace mpfr = __llvm_libc::testing::mpfr;
|
||||
|
||||
template <typename T>
|
||||
class HypotTestTemplate : public __llvm_libc::testing::Test {
|
||||
private:
|
||||
using Func = T (*)(T, T);
|
||||
using FPBits = __llvm_libc::fputil::FPBits<T>;
|
||||
using UIntType = typename FPBits::UIntType;
|
||||
const T nan = __llvm_libc::fputil::FPBits<T>::buildNaN(1);
|
||||
const T inf = __llvm_libc::fputil::FPBits<T>::inf();
|
||||
const T negInf = __llvm_libc::fputil::FPBits<T>::negInf();
|
||||
const T zero = __llvm_libc::fputil::FPBits<T>::zero();
|
||||
const T negZero = __llvm_libc::fputil::FPBits<T>::negZero();
|
||||
|
||||
public:
|
||||
void testSpecialNumbers(Func func) {
|
||||
EXPECT_FP_EQ(func(inf, nan), inf);
|
||||
EXPECT_FP_EQ(func(nan, negInf), inf);
|
||||
EXPECT_FP_EQ(func(zero, inf), inf);
|
||||
EXPECT_FP_EQ(func(negInf, negZero), inf);
|
||||
|
||||
EXPECT_FP_EQ(func(nan, nan), nan);
|
||||
EXPECT_FP_EQ(func(nan, zero), nan);
|
||||
EXPECT_FP_EQ(func(negZero, nan), nan);
|
||||
|
||||
EXPECT_FP_EQ(func(negZero, zero), zero);
|
||||
}
|
||||
|
||||
void testSubnormalRange(Func func) {
|
||||
constexpr UIntType count = 1000001;
|
||||
constexpr UIntType step =
|
||||
(FPBits::maxSubnormal - FPBits::minSubnormal) / count;
|
||||
for (UIntType v = FPBits::minSubnormal, w = FPBits::maxSubnormal;
|
||||
v <= FPBits::maxSubnormal && w >= FPBits::minSubnormal;
|
||||
v += step, w -= step) {
|
||||
T x = FPBits(v), y = FPBits(w);
|
||||
T result = func(x, y);
|
||||
mpfr::BinaryInput<T> input{x, y};
|
||||
ASSERT_MPFR_MATCH(mpfr::Operation::Hypot, input, result, 0.5);
|
||||
}
|
||||
}
|
||||
|
||||
void testNormalRange(Func func) {
|
||||
constexpr UIntType count = 1000001;
|
||||
constexpr UIntType step = (FPBits::maxNormal - FPBits::minNormal) / count;
|
||||
for (UIntType v = FPBits::minNormal, w = FPBits::maxNormal;
|
||||
v <= FPBits::maxNormal && w >= FPBits::minNormal;
|
||||
v += step, w -= step) {
|
||||
T x = FPBits(v), y = FPBits(w);
|
||||
T result = func(x, y);
|
||||
mpfr::BinaryInput<T> input{x, y};
|
||||
ASSERT_MPFR_MATCH(mpfr::Operation::Hypot, input, result, 0.5);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif // LLVM_LIBC_TEST_SRC_MATH_HYPOTTEST_H
|
|
@ -0,0 +1,20 @@
|
|||
//===-- Unittests for hypot -----------------------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "HypotTest.h"
|
||||
|
||||
#include "include/math.h"
|
||||
#include "src/math/hypot.h"
|
||||
|
||||
using HypotTest = HypotTestTemplate<double>;
|
||||
|
||||
TEST_F(HypotTest, SpecialNumbers) { testSpecialNumbers(&__llvm_libc::hypot); }
|
||||
|
||||
TEST_F(HypotTest, SubnormalRange) { testSubnormalRange(&__llvm_libc::hypot); }
|
||||
|
||||
TEST_F(HypotTest, NormalRange) { testNormalRange(&__llvm_libc::hypot); }
|
|
@ -6,56 +6,15 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "HypotTest.h"
|
||||
|
||||
#include "include/math.h"
|
||||
#include "src/math/hypotf.h"
|
||||
#include "utils/FPUtil/FPBits.h"
|
||||
#include "utils/FPUtil/TestHelpers.h"
|
||||
#include "utils/MPFRWrapper/MPFRUtils.h"
|
||||
#include "utils/UnitTest/Test.h"
|
||||
#include <math.h>
|
||||
|
||||
using FPBits = __llvm_libc::fputil::FPBits<float>;
|
||||
using UIntType = FPBits::UIntType;
|
||||
using HypotfTest = HypotTestTemplate<float>;
|
||||
|
||||
namespace mpfr = __llvm_libc::testing::mpfr;
|
||||
TEST_F(HypotfTest, SpecialNumbers) { testSpecialNumbers(&__llvm_libc::hypotf); }
|
||||
|
||||
DECLARE_SPECIAL_CONSTANTS(float)
|
||||
TEST_F(HypotfTest, SubnormalRange) { testSubnormalRange(&__llvm_libc::hypotf); }
|
||||
|
||||
TEST(HypotfTest, SpecialNumbers) {
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(inf, nan), inf);
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(nan, negInf), inf);
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(zero, inf), inf);
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(negInf, negZero), inf);
|
||||
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(nan, nan), nan);
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(nan, zero), nan);
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(negZero, nan), nan);
|
||||
|
||||
EXPECT_FP_EQ(__llvm_libc::hypotf(negZero, zero), zero);
|
||||
}
|
||||
|
||||
TEST(HypotfTest, SubnormalRange) {
|
||||
constexpr UIntType count = 1000001;
|
||||
constexpr UIntType step =
|
||||
(FPBits::maxSubnormal - FPBits::minSubnormal) / count;
|
||||
for (UIntType v = FPBits::minSubnormal, w = FPBits::maxSubnormal;
|
||||
v <= FPBits::maxSubnormal && w >= FPBits::minSubnormal;
|
||||
v += step, w -= step) {
|
||||
float x = FPBits(v), y = FPBits(w);
|
||||
float result = __llvm_libc::hypotf(x, y);
|
||||
mpfr::BinaryInput<float> input{x, y};
|
||||
ASSERT_MPFR_MATCH(mpfr::Operation::Hypot, input, result, 0.5);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(HypotfTest, NormalRange) {
|
||||
constexpr UIntType count = 1000001;
|
||||
constexpr UIntType step = (FPBits::maxNormal - FPBits::minNormal) / count;
|
||||
for (UIntType v = FPBits::minNormal, w = FPBits::maxNormal;
|
||||
v <= FPBits::maxNormal && w >= FPBits::minNormal; v += step, w -= step) {
|
||||
float x = FPBits(v), y = FPBits(w);
|
||||
float result = __llvm_libc::hypotf(x, y);
|
||||
;
|
||||
mpfr::BinaryInput<float> input{x, y};
|
||||
ASSERT_MPFR_MATCH(mpfr::Operation::Hypot, input, result, 0.5);
|
||||
}
|
||||
}
|
||||
TEST_F(HypotfTest, NormalRange) { testNormalRange(&__llvm_libc::hypotf); }
|
||||
|
|
|
@ -0,0 +1,267 @@
|
|||
//===-- Implementation of hypotf function ---------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_UTILS_FPUTIL_HYPOT_H
|
||||
#define LLVM_LIBC_UTILS_FPUTIL_HYPOT_H
|
||||
|
||||
#include "BasicOperations.h"
|
||||
#include "FPBits.h"
|
||||
#include "utils/CPP/TypeTraits.h"
|
||||
|
||||
namespace __llvm_libc {
|
||||
namespace fputil {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename T> static inline T findLeadingOne(T mant, int &shift_length);
|
||||
|
||||
template <>
|
||||
inline uint32_t findLeadingOne<uint32_t>(uint32_t mant, int &shift_length) {
|
||||
shift_length = 0;
|
||||
constexpr int nsteps = 5;
|
||||
constexpr uint32_t bounds[nsteps] = {1 << 16, 1 << 8, 1 << 4, 1 << 2, 1 << 1};
|
||||
constexpr int shifts[nsteps] = {16, 8, 4, 2, 1};
|
||||
for (int i = 0; i < nsteps; ++i) {
|
||||
if (mant >= bounds[i]) {
|
||||
shift_length += shifts[i];
|
||||
mant >>= shifts[i];
|
||||
}
|
||||
}
|
||||
return 1U << shift_length;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline uint64_t findLeadingOne<uint64_t>(uint64_t mant, int &shift_length) {
|
||||
shift_length = 0;
|
||||
constexpr int nsteps = 6;
|
||||
constexpr uint64_t bounds[nsteps] = {1ULL << 32, 1ULL << 16, 1ULL << 8,
|
||||
1ULL << 4, 1ULL << 2, 1ULL << 1};
|
||||
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};
|
||||
for (int i = 0; i < nsteps; ++i) {
|
||||
if (mant >= bounds[i]) {
|
||||
shift_length += shifts[i];
|
||||
mant >>= shifts[i];
|
||||
}
|
||||
}
|
||||
return 1ULL << shift_length;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template <typename T> struct DoubleLength;
|
||||
|
||||
template <> struct DoubleLength<uint16_t> { using Type = uint32_t; };
|
||||
|
||||
template <> struct DoubleLength<uint32_t> { using Type = uint64_t; };
|
||||
|
||||
template <> struct DoubleLength<uint64_t> { using Type = __uint128_t; };
|
||||
|
||||
// Correctly rounded IEEE 754 HYPOT(x, y) with round to nearest, ties to even.
|
||||
//
|
||||
// Algorithm:
|
||||
// - Let a = max(|x|, |y|), b = min(|x|, |y|), then we have that:
|
||||
// a <= sqrt(a^2 + b^2) <= min(a + b, a*sqrt(2))
|
||||
// 1. So if b < eps(a)/2, then HYPOT(x, y) = a.
|
||||
//
|
||||
// - Moreover, the exponent part of HYPOT(x, y) is either the same or 1 more
|
||||
// than the exponent part of a.
|
||||
//
|
||||
// 2. For the remaining cases, we will use the digit-by-digit (shift-and-add)
|
||||
// algorithm to compute SQRT(Z):
|
||||
//
|
||||
// - For Y = y0.y1...yn... = SQRT(Z),
|
||||
// let Y(n) = y0.y1...yn be the first n fractional digits of Y.
|
||||
//
|
||||
// - The nth scaled residual R(n) is defined to be:
|
||||
// R(n) = 2^n * (Z - Y(n)^2)
|
||||
//
|
||||
// - Since Y(n) = Y(n - 1) + yn * 2^(-n), the scaled residual
|
||||
// satisfies the following recurrence formula:
|
||||
// R(n) = 2*R(n - 1) - yn*(2*Y(n - 1) + 2^(-n)),
|
||||
// with the initial conditions:
|
||||
// Y(0) = y0, and R(0) = Z - y0.
|
||||
//
|
||||
// - So the nth fractional digit of Y = SQRT(Z) can be decided by:
|
||||
// yn = 1 if 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n),
|
||||
// 0 otherwise.
|
||||
//
|
||||
// 3. Precision analysis:
|
||||
//
|
||||
// - Notice that in the decision function:
|
||||
// 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n),
|
||||
// the right hand side only uses up to the 2^(-n)-bit, and both sides are
|
||||
// non-negative, so R(n - 1) can be truncated at the 2^(-(n + 1))-bit, so
|
||||
// that 2*R(n - 1) is corrected up to the 2^(-n)-bit.
|
||||
//
|
||||
// - Thus, in order to round SQRT(a^2 + b^2) correctly up to n-fractional
|
||||
// bits, we need to perform the summation (a^2 + b^2) correctly up to (2n +
|
||||
// 2)-fractional bits, and the remaining bits are sticky bits (i.e. we only
|
||||
// care if they are 0 or > 0), and the comparisons, additions/subtractions
|
||||
// can be done in n-fractional bits precision.
|
||||
//
|
||||
// - For single precision (float), we can use uint64_t to store the sum a^2 +
|
||||
// b^2 exact up to (2n + 2)-fractional bits.
|
||||
//
|
||||
// - Then we can feed this sum into the digit-by-digit algorithm for SQRT(Z)
|
||||
// described above.
|
||||
//
|
||||
//
|
||||
// Special cases:
|
||||
// - HYPOT(x, y) is +Inf if x or y is +Inf or -Inf; else
|
||||
// - HYPOT(x, y) is NaN if x or y is NaN.
|
||||
//
|
||||
template <typename T,
|
||||
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
|
||||
static inline T hypot(T x, T y) {
|
||||
using FPBits_t = FPBits<T>;
|
||||
using UIntType = typename FPBits<T>::UIntType;
|
||||
using DUIntType = typename DoubleLength<UIntType>::Type;
|
||||
|
||||
FPBits_t x_bits(x), y_bits(y);
|
||||
|
||||
if (x_bits.isInf() || y_bits.isInf()) {
|
||||
return FPBits_t::inf();
|
||||
}
|
||||
if (x_bits.isNaN()) {
|
||||
return x;
|
||||
}
|
||||
if (y_bits.isNaN()) {
|
||||
return y;
|
||||
}
|
||||
|
||||
uint16_t a_exp, b_exp, out_exp;
|
||||
UIntType a_mant, b_mant;
|
||||
DUIntType a_mant_sq, b_mant_sq;
|
||||
bool sticky_bits;
|
||||
|
||||
if ((x_bits.exponent >= y_bits.exponent + MantissaWidth<T>::value + 2) ||
|
||||
(y == 0)) {
|
||||
return abs(x);
|
||||
} else if ((y_bits.exponent >=
|
||||
x_bits.exponent + MantissaWidth<T>::value + 2) ||
|
||||
(x == 0)) {
|
||||
y_bits.sign = 0;
|
||||
return abs(y);
|
||||
}
|
||||
|
||||
if (x >= y) {
|
||||
a_exp = x_bits.exponent;
|
||||
a_mant = x_bits.mantissa;
|
||||
b_exp = y_bits.exponent;
|
||||
b_mant = y_bits.mantissa;
|
||||
} else {
|
||||
a_exp = y_bits.exponent;
|
||||
a_mant = y_bits.mantissa;
|
||||
b_exp = x_bits.exponent;
|
||||
b_mant = x_bits.mantissa;
|
||||
}
|
||||
|
||||
out_exp = a_exp;
|
||||
|
||||
// Add an extra bit to simplify the final rounding bit computation.
|
||||
constexpr UIntType one = UIntType(1) << (MantissaWidth<T>::value + 1);
|
||||
|
||||
a_mant <<= 1;
|
||||
b_mant <<= 1;
|
||||
|
||||
UIntType leading_one;
|
||||
int y_mant_width;
|
||||
if (a_exp != 0) {
|
||||
leading_one = one;
|
||||
a_mant |= one;
|
||||
y_mant_width = MantissaWidth<T>::value + 1;
|
||||
} else {
|
||||
leading_one = internal::findLeadingOne(a_mant, y_mant_width);
|
||||
}
|
||||
|
||||
if (b_exp != 0) {
|
||||
b_mant |= one;
|
||||
}
|
||||
|
||||
a_mant_sq = static_cast<DUIntType>(a_mant) * a_mant;
|
||||
b_mant_sq = static_cast<DUIntType>(b_mant) * b_mant;
|
||||
|
||||
// At this point, a_exp >= b_exp > a_exp - 25, so in order to line up aSqMant
|
||||
// and bSqMant, we need to shift bSqMant to the right by (a_exp - b_exp) bits.
|
||||
// But before that, remember to store the losing bits to sticky.
|
||||
// The shift length is for a^2 and b^2, so it's double of the exponent
|
||||
// difference between a and b.
|
||||
uint16_t shift_length = 2 * (a_exp - b_exp);
|
||||
sticky_bits =
|
||||
((b_mant_sq & ((DUIntType(1) << shift_length) - DUIntType(1))) !=
|
||||
DUIntType(0));
|
||||
b_mant_sq >>= shift_length;
|
||||
|
||||
DUIntType sum = a_mant_sq + b_mant_sq;
|
||||
if (sum >= (DUIntType(1) << (2 * y_mant_width + 2))) {
|
||||
// a^2 + b^2 >= 4* leading_one^2, so we will need an extra bit to the left.
|
||||
if (leading_one == one) {
|
||||
// For normal result, we discard the last 2 bits of the sum and increase
|
||||
// the exponent.
|
||||
sticky_bits = sticky_bits || ((sum & 0x3U) != 0);
|
||||
sum >>= 2;
|
||||
++out_exp;
|
||||
if (out_exp >= FPBits_t::maxExponent) {
|
||||
return FPBits_t::inf();
|
||||
}
|
||||
} else {
|
||||
// For denormal result, we simply move the leading bit of the result to
|
||||
// the left by 1.
|
||||
leading_one <<= 1;
|
||||
++y_mant_width;
|
||||
}
|
||||
}
|
||||
|
||||
UIntType Y = leading_one;
|
||||
UIntType R = static_cast<UIntType>(sum >> y_mant_width) - leading_one;
|
||||
UIntType tailBits = static_cast<UIntType>(sum) & (leading_one - 1);
|
||||
|
||||
for (UIntType current_bit = leading_one >> 1; current_bit;
|
||||
current_bit >>= 1) {
|
||||
R = (R << 1) + ((tailBits & current_bit) ? 1 : 0);
|
||||
UIntType tmp = (Y << 1) + current_bit; // 2*y(n - 1) + 2^(-n)
|
||||
if (R >= tmp) {
|
||||
R -= tmp;
|
||||
Y += current_bit;
|
||||
}
|
||||
}
|
||||
|
||||
bool round_bit = Y & UIntType(1);
|
||||
bool lsb = Y & UIntType(2);
|
||||
|
||||
if (Y >= one) {
|
||||
Y -= one;
|
||||
|
||||
if (out_exp == 0) {
|
||||
out_exp = 1;
|
||||
}
|
||||
}
|
||||
|
||||
Y >>= 1;
|
||||
|
||||
// Round to the nearest, tie to even.
|
||||
if (round_bit && (lsb || sticky_bits || (R != 0))) {
|
||||
++Y;
|
||||
}
|
||||
|
||||
if (Y >= (one >> 1)) {
|
||||
Y -= one >> 1;
|
||||
++out_exp;
|
||||
if (out_exp >= FPBits_t::maxExponent) {
|
||||
return FPBits_t::inf();
|
||||
}
|
||||
}
|
||||
|
||||
Y |= static_cast<UIntType>(out_exp) << MantissaWidth<T>::value;
|
||||
return *reinterpret_cast<T *>(&Y);
|
||||
}
|
||||
|
||||
} // namespace fputil
|
||||
} // namespace __llvm_libc
|
||||
|
||||
#endif // LLVM_LIBC_UTILS_FPUTIL_HYPOT_H
|
Loading…
Reference in New Issue