ELF: Undefine all symbols, not just those that we expect to be defined.

This allows the combined LTO object to provide a definition with the same
name as a symbol that was internalized without causing a duplicate symbol
error. This normally happens during parallel codegen which externalizes
originally-internal symbols, for example.

In order to make this work, I needed to relax the undefined symbol error to
only report an error for symbols that are used in regular objects.

Differential Revision: http://reviews.llvm.org/D19954

llvm-svn: 268649
This commit is contained in:
Peter Collingbourne 2016-05-05 17:13:49 +00:00
parent f6699f5047
commit 3ad1c1e242
3 changed files with 81 additions and 23 deletions

View File

@ -106,13 +106,6 @@ void BitcodeCompiler::add(BitcodeFile &F) {
SmallPtrSet<GlobalValue *, 8> Used;
collectUsedGlobalVariables(M, Used, /* CompilerUsed */ false);
// This function is called if we know that the combined LTO object will
// provide a definition of a symbol. It undefines the symbol so that the
// definition in the combined LTO object will replace it when parsed.
auto Undefine = [](Symbol *S) {
replaceBody<Undefined>(S, S->body()->getName(), STV_DEFAULT, 0);
};
for (const BasicSymbolRef &Sym : Obj->symbols()) {
uint32_t Flags = Sym.getFlags();
GlobalValue *GV = Obj->getSymbolGV(Sym.getRawDataRefImpl());
@ -123,14 +116,30 @@ void BitcodeCompiler::add(BitcodeFile &F) {
Symbol *S = Syms[BodyIndex++];
if (Flags & BasicSymbolRef::SF_Undefined)
continue;
if (!GV) {
// Module asm symbol.
Undefine(S);
continue;
}
auto *B = dyn_cast<DefinedBitcode>(S->body());
if (!B || B->File != &F)
continue;
// We collect the set of symbols we want to internalize here
// and change the linkage after the IRMover executed, i.e. after
// we imported the symbols and satisfied undefined references
// to it. We can't just change linkage here because otherwise
// the IRMover will just rename the symbol.
if (GV && shouldInternalize(Used, S, GV))
InternalizedSyms.insert(GV->getName());
// At this point we know that either the combined LTO object will provide a
// definition of a symbol, or we will internalize it. In either case, we
// need to undefine the symbol. In the former case, the real definition
// needs to be able to replace the original definition without conflicting.
// In the latter case, we need to allow the combined LTO object to provide a
// definition with the same name, for example when doing parallel codegen.
replaceBody<Undefined>(S, S->body()->getName(), STV_DEFAULT, 0);
if (!GV)
// Module asm symbol.
continue;
switch (GV->getLinkage()) {
default:
break;
@ -142,16 +151,6 @@ void BitcodeCompiler::add(BitcodeFile &F) {
break;
}
// We collect the set of symbols we want to internalize here
// and change the linkage after the IRMover executed, i.e. after
// we imported the symbols and satisfied undefined references
// to it. We can't just change linkage here because otherwise
// the IRMover will just rename the symbol.
if (shouldInternalize(Used, S, GV))
InternalizedSyms.insert(GV->getName());
else
Undefine(S);
Keep.push_back(GV);
}

View File

@ -1391,7 +1391,9 @@ template <class ELFT> void Writer<ELFT>::createSections() {
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
SS->File->IsUsed = true;
if (Body->isUndefined() && !S->isWeak())
// We only report undefined symbols in regular objects. This means that we
// will accept an undefined reference in bitcode if it can be optimized out.
if (S->IsUsedInRegularObj && Body->isUndefined() && !S->isWeak())
reportUndefined<ELFT>(Symtab, Body);
if (auto *C = dyn_cast<DefinedCommon>(Body))

View File

@ -0,0 +1,57 @@
; REQUIRES: x86
; RUN: llvm-as -o %t.bc %s
; RUN: ld.lld -m elf_x86_64 --lto-jobs=2 -save-temps -o %t %t.bc -e foo --lto-O0
; RUN: llvm-readobj -t -dyn-symbols %t | FileCheck %s
; RUN: llvm-nm %t0.lto.o | FileCheck --check-prefix=CHECK0 %s
; RUN: llvm-nm %t1.lto.o | FileCheck --check-prefix=CHECK1 %s
; CHECK: Symbols [
; CHECK-NEXT: Symbol {
; CHECK-NEXT: Name: (0)
; CHECK-NEXT: Value: 0x0
; CHECK-NEXT: Size: 0
; CHECK-NEXT: Binding: Local (0x0)
; CHECK-NEXT: Type: None (0x0)
; CHECK-NEXT: Other: 0
; CHECK-NEXT: Section: Undefined (0x0)
; CHECK-NEXT: }
; CHECK-NEXT: Symbol {
; CHECK-NEXT: Name: bar (5)
; CHECK-NEXT: Value: 0x11010
; CHECK-NEXT: Size: 8
; CHECK-NEXT: Binding: Local (0x0)
; CHECK-NEXT: Type: Function (0x2)
; CHECK-NEXT: Other [ (0x2)
; CHECK-NEXT: STV_HIDDEN (0x2)
; CHECK-NEXT: ]
; CHECK-NEXT: Section: .text (0x2)
; CHECK-NEXT: }
; CHECK-NEXT: Symbol {
; CHECK-NEXT: Name: foo (1)
; CHECK-NEXT: Value: 0x11000
; CHECK-NEXT: Size: 8
; CHECK-NEXT: Binding: Global (0x1)
; CHECK-NEXT: Type: Function (0x2)
; CHECK-NEXT: Other: 0
; CHECK-NEXT: Section: .text (0x2)
; CHECK-NEXT: }
; CHECK-NEXT: ]
; CHECK-NEXT: DynamicSymbols [
; CHECK-NEXT: ]
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; CHECK0: U bar
; CHECK0: T foo
define void @foo() {
call void @bar()
ret void
}
; CHECK1: T bar
; CHECK1: U foo
define void @bar() {
call void @foo()
ret void
}