[ms-cxxabi] Correctly compute the size of member pointers

Summary:
This also relaxes the requirement on Windows that the member pointer
class type be a complete type (http://llvm.org/PR12070).  We still ask
for a complete type to instantiate any templates (MSVC does this), but
if that fails we continue as normal, relying on any inheritance
attributes on the declaration.

Reviewers: rjmccall

CC: triton, timurrrr, cfe-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D568

llvm-svn: 178283
This commit is contained in:
Reid Kleckner 2013-03-28 20:02:56 +00:00
parent 06bb7f7ef6
commit 3a52abf553
6 changed files with 241 additions and 41 deletions

View File

@ -1496,10 +1496,7 @@ ASTContext::getTypeInfoImpl(const Type *T) const {
}
case Type::MemberPointer: {
const MemberPointerType *MPT = cast<MemberPointerType>(T);
std::pair<uint64_t, unsigned> PtrDiffInfo =
getTypeInfo(getPointerDiffType());
Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
Align = PtrDiffInfo.second;
llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
break;
}
case Type::Complex: {

View File

@ -27,9 +27,9 @@ class CXXABI {
public:
virtual ~CXXABI();
/// Returns the size of a member pointer in multiples of the target
/// pointer size.
virtual unsigned getMemberPointerSize(const MemberPointerType *MPT) const = 0;
/// Returns the width and alignment of a member pointer in bits.
virtual std::pair<uint64_t, unsigned>
getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const = 0;
/// Returns the default calling convention for C++ methods.
virtual CallingConv getDefaultMethodCallConv(bool isVariadic) const = 0;

View File

@ -33,10 +33,15 @@ protected:
public:
ItaniumCXXABI(ASTContext &Ctx) : Context(Ctx) { }
unsigned getMemberPointerSize(const MemberPointerType *MPT) const {
QualType Pointee = MPT->getPointeeType();
if (Pointee->isFunctionType()) return 2;
return 1;
std::pair<uint64_t, unsigned>
getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const {
const TargetInfo &Target = Context.getTargetInfo();
TargetInfo::IntType PtrDiff = Target.getPtrDiffType(0);
uint64_t Width = Target.getTypeWidth(PtrDiff);
unsigned Align = Target.getTypeAlign(PtrDiff);
if (MPT->getPointeeType()->isFunctionType())
Width = 2 * Width;
return std::make_pair(Width, Align);
}
CallingConv getDefaultMethodCallConv(bool isVariadic) const {

View File

@ -13,6 +13,7 @@
//===----------------------------------------------------------------------===//
#include "CXXABI.h"
#include "clang/AST/Attr.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/RecordLayout.h"
@ -27,7 +28,8 @@ class MicrosoftCXXABI : public CXXABI {
public:
MicrosoftCXXABI(ASTContext &Ctx) : Context(Ctx) { }
unsigned getMemberPointerSize(const MemberPointerType *MPT) const;
std::pair<uint64_t, unsigned>
getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const;
CallingConv getDefaultMethodCallConv(bool isVariadic) const {
if (!isVariadic && Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
@ -52,17 +54,77 @@ public:
};
}
unsigned MicrosoftCXXABI::getMemberPointerSize(const MemberPointerType *MPT) const {
QualType Pointee = MPT->getPointeeType();
CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl();
if (RD->getNumVBases() > 0) {
if (Pointee->isFunctionType())
return 3;
else
return 2;
} else if (RD->getNumBases() > 1 && Pointee->isFunctionType())
return 2;
return 1;
// getNumBases() seems to only give us the number of direct bases, and not the
// total. This function tells us if we inherit from anybody that uses MI, or if
// we have a non-primary base class, which uses the multiple inheritance model.
static bool usesMultipleInheritanceModel(const CXXRecordDecl *RD) {
while (RD->getNumBases() > 0) {
if (RD->getNumBases() > 1)
return true;
assert(RD->getNumBases() == 1);
const CXXRecordDecl *Base = RD->bases_begin()->getType()->getAsCXXRecordDecl();
if (RD->isPolymorphic() && !Base->isPolymorphic())
return true;
RD = Base;
}
return false;
}
std::pair<uint64_t, unsigned>
MicrosoftCXXABI::getMemberPointerWidthAndAlign(const MemberPointerType *MPT) const {
const CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl();
const TargetInfo &Target = Context.getTargetInfo();
assert(Target.getTriple().getArch() == llvm::Triple::x86 ||
Target.getTriple().getArch() == llvm::Triple::x86_64);
Attr *IA = RD->getAttr<MSInheritanceAttr>();
attr::Kind Inheritance;
if (IA) {
Inheritance = IA->getKind();
} else if (RD->getNumVBases() > 0) {
Inheritance = attr::VirtualInheritance;
} else if (MPT->getPointeeType()->isFunctionType() &&
usesMultipleInheritanceModel(RD)) {
Inheritance = attr::MultipleInheritance;
} else {
Inheritance = attr::SingleInheritance;
}
unsigned PtrSize = Target.getPointerWidth(0);
unsigned IntSize = Target.getIntWidth();
uint64_t Width;
unsigned Align;
if (MPT->getPointeeType()->isFunctionType()) {
// Member function pointers are a struct of a function pointer followed by a
// variable number of ints depending on the inheritance model used. The
// function pointer is a real function if it is non-virtual and a vftable
// slot thunk if it is virtual. The ints select the object base passed for
// the 'this' pointer.
Align = Target.getPointerAlign(0);
switch (Inheritance) {
case attr::SingleInheritance: Width = PtrSize; break;
case attr::MultipleInheritance: Width = PtrSize + 1 * IntSize; break;
case attr::VirtualInheritance: Width = PtrSize + 2 * IntSize; break;
case attr::UnspecifiedInheritance: Width = PtrSize + 3 * IntSize; break;
default: llvm_unreachable("unknown inheritance model");
}
} else {
// Data pointers are an aggregate of ints. The first int is an offset
// followed by vbtable-related offsets.
Align = Target.getIntAlign();
switch (Inheritance) {
case attr::SingleInheritance: // Same as multiple inheritance.
case attr::MultipleInheritance: Width = 1 * IntSize; break;
case attr::VirtualInheritance: Width = 2 * IntSize; break;
case attr::UnspecifiedInheritance: Width = 3 * IntSize; break;
default: llvm_unreachable("unknown inheritance model");
}
}
Width = llvm::RoundUpToAlignment(Width, Align);
// FIXME: Verify that our alignment matches MSVC.
return std::make_pair(Width, Align);
}
CXXABI *clang::CreateMicrosoftCXXABI(ASTContext &Ctx) {

View File

@ -1728,13 +1728,29 @@ QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
// according to the class type, which means that we really need a
// complete type if possible, which means we need to instantiate templates.
//
// For now, just require a complete type, which will instantiate
// templates. This will also error if the type is just forward-declared,
// which is a bug, but it's a bug that saves us from dealing with some
// complexities at the moment.
if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
RequireCompleteType(Loc, Class, diag::err_incomplete_type))
return QualType();
// If template instantiation fails or the type is just incomplete, we have to
// add an extra slot to the member pointer. Yes, this does cause problems
// when passing pointers between TUs that disagree about the size.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
CXXRecordDecl *RD = Class->getAsCXXRecordDecl();
if (!RD->hasAttr<MSInheritanceAttr>()) {
// Lock in the inheritance model on the first use of a member pointer.
// Otherwise we may disagree about the size at different points in the TU.
// FIXME: MSVC picks a model on the first use that needs to know the size,
// rather than on the first mention of the type, e.g. typedefs.
SourceRange DeclRange = RD->getSourceRange();
if (RequireCompleteType(Loc, Class, 0) && !RD->isBeingDefined()) {
// We know it doesn't have an attribute and it's incomplete, so use the
// unspecified inheritance model. If we're in the record body, we can
// figure out the inheritance model.
for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
E = RD->redecls_end(); I != E; ++I) {
I->addAttr(::new (Context) UnspecifiedInheritanceAttr(
RD->getSourceRange(), Context));
}
}
}
}
return Context.getMemberPointerType(T, Class.getTypePtr());
}

View File

@ -1,14 +1,134 @@
// RUN: %clang_cc1 -cxx-abi microsoft -fsyntax-only -verify %s
// RUN: %clang_cc1 -std=c++11 -cxx-abi microsoft -fms-compatibility -fsyntax-only -triple=i386-pc-win32 -verify %s
// RUN: %clang_cc1 -std=c++11 -cxx-abi microsoft -fms-compatibility -fsyntax-only -triple=x86_64-pc-win32 -verify %s
//
// This file should also give no diagnostics when run through cl.exe from MSVS
// 2012, which supports C++11 and static_assert. It should pass for both 64-bit
// and 32-bit x86.
//
// expected-no-diagnostics
// Test that we reject pointers to members of incomplete classes (for now)
struct A; //expected-note{{forward declaration of 'A'}}
int A::*pai1; //expected-error{{incomplete type 'A'}}
// Test the size of various member pointer combinations:
// - complete and incomplete
// - single, multiple, and virtual inheritance (and unspecified for incomplete)
// - data and function pointers
// - templated with declared specializations with annotations
// - template that can be instantiated
// Test that we don't allow reinterpret_casts from pointers of one size to
// pointers of a different size.
struct A {};
struct B {};
struct C: A, B {};
// http://llvm.org/PR12070
struct Foo {
typedef int Foo::*FooInt;
int f;
};
void (A::*paf)();
void (C::*pcf)() = reinterpret_cast<void (C::*)()>(paf); //expected-error{{cannot reinterpret_cast from member pointer type}}
enum {
kSingleDataSize = 1 * sizeof(int),
kSingleFunctionSize = 1 * sizeof(void *),
kMultipleDataSize = 1 * sizeof(int),
kMultipleFunctionSize = 2 * sizeof(void *),
kVirtualDataSize = 2 * sizeof(int),
kVirtualFunctionSize = 2 * sizeof(int) + 1 * sizeof(void *),
// Unspecified is weird, it's 1 more slot than virtual.
kUnspecifiedDataSize = kVirtualDataSize + 1 * sizeof(int),
kUnspecifiedFunctionSize = kVirtualFunctionSize + 1 * sizeof(void *),
};
// incomplete types
class __single_inheritance IncSingle;
class __multiple_inheritance IncMultiple;
class __virtual_inheritance IncVirtual;
static_assert(sizeof(int IncSingle::*) == kSingleDataSize, "");
static_assert(sizeof(int IncMultiple::*) == kMultipleDataSize, "");
static_assert(sizeof(int IncVirtual::*) == kVirtualDataSize, "");
static_assert(sizeof(void (IncSingle::*)()) == kSingleFunctionSize, "");
static_assert(sizeof(void (IncMultiple::*)()) == kMultipleFunctionSize, "");
static_assert(sizeof(void (IncVirtual::*)()) == kVirtualFunctionSize, "");
// An incomplete type with an unspecified inheritance model seems to take one
// more slot than virtual. It's not clear what it's used for yet.
class IncUnspecified;
static_assert(sizeof(int IncUnspecified::*) == kUnspecifiedDataSize, "");
static_assert(sizeof(void (IncUnspecified::*)()) == kUnspecifiedFunctionSize, "");
// complete types
struct B1 { };
struct B2 { };
struct Single { };
struct Multiple : B1, B2 { };
struct Virtual : virtual B1 { };
static_assert(sizeof(int Single::*) == kSingleDataSize, "");
static_assert(sizeof(int Multiple::*) == kMultipleDataSize, "");
static_assert(sizeof(int Virtual::*) == kVirtualDataSize, "");
static_assert(sizeof(void (Single::*)()) == kSingleFunctionSize, "");
static_assert(sizeof(void (Multiple::*)()) == kMultipleFunctionSize, "");
static_assert(sizeof(void (Virtual::*)()) == kVirtualFunctionSize, "");
// Test both declared and defined templates.
template <typename T> class X;
template <> class __single_inheritance X<IncSingle>;
template <> class __multiple_inheritance X<IncMultiple>;
template <> class __virtual_inheritance X<IncVirtual>;
// Don't declare X<IncUnspecified>.
static_assert(sizeof(int X<IncSingle>::*) == kSingleDataSize, "");
static_assert(sizeof(int X<IncMultiple>::*) == kMultipleDataSize, "");
static_assert(sizeof(int X<IncVirtual>::*) == kVirtualDataSize, "");
static_assert(sizeof(int X<IncUnspecified>::*) == kUnspecifiedDataSize, "");
static_assert(sizeof(void (X<IncSingle>::*)()) == kSingleFunctionSize, "");
static_assert(sizeof(void (X<IncMultiple>::*)()) == kMultipleFunctionSize, "");
static_assert(sizeof(void (X<IncVirtual>::*)()) == kVirtualFunctionSize, "");
static_assert(sizeof(void (X<IncUnspecified>::*)()) == kUnspecifiedFunctionSize, "");
template <typename T>
struct Y : T { };
static_assert(sizeof(int Y<Single>::*) == kSingleDataSize, "");
static_assert(sizeof(int Y<Multiple>::*) == kMultipleDataSize, "");
static_assert(sizeof(int Y<Virtual>::*) == kVirtualDataSize, "");
static_assert(sizeof(void (Y<Single>::*)()) == kSingleFunctionSize, "");
static_assert(sizeof(void (Y<Multiple>::*)()) == kMultipleFunctionSize, "");
static_assert(sizeof(void (Y<Virtual>::*)()) == kVirtualFunctionSize, "");
struct A { int x; void bar(); };
struct B : A { virtual void foo(); };
static_assert(sizeof(int B::*) == kSingleDataSize, "");
// A non-primary base class uses the multiple inheritance model for member
// pointers.
static_assert(sizeof(void (B::*)()) == kMultipleFunctionSize, "");
struct AA { int x; virtual void foo(); };
struct BB : AA { void bar(); };
struct CC : BB { virtual void baz(); };
static_assert(sizeof(void (CC::*)()) == kSingleFunctionSize, "");
// We start out unspecified.
struct ForwardDecl1;
struct ForwardDecl2;
// Re-declare to force us to iterate decls when adding attributes.
struct ForwardDecl1;
struct ForwardDecl2;
typedef int ForwardDecl1::*MemPtr1;
typedef int ForwardDecl2::*MemPtr2;
MemPtr1 variable_forces_sizing;
struct ForwardDecl1 : B {
virtual void foo();
};
struct ForwardDecl2 : B {
virtual void foo();
};
static_assert(sizeof(variable_forces_sizing) == kUnspecifiedDataSize, "");
static_assert(sizeof(MemPtr1) == kUnspecifiedDataSize, "");
// FIXME: Clang fails this assert because it locks in the inheritance model at
// the point of the typedef instead of the first usage, while MSVC does not.
//static_assert(sizeof(MemPtr2) == kSingleDataSize, "");
struct MemPtrInBody {
typedef int MemPtrInBody::*MemPtr;
int a;
operator MemPtr() const {
return a ? &MemPtrInBody::a : 0;
}
};
static_assert(sizeof(MemPtrInBody::MemPtr) == kSingleDataSize, "");