Increase accuracy of __builtin_object_size.

Improvements:

- For all types, we would give up in a case such as:
    __builtin_object_size((char*)&foo, N);
  even if we could provide an answer to
    __builtin_object_size(&foo, N);
  We now provide the same answer for both of the above examples in all
  cases.

- For type=1|3, we now support subobjects with unknown bases, as long
  as the designator is valid.

Thanks to Richard Smith for the review + design planning.

Review: http://reviews.llvm.org/D12169
llvm-svn: 246877
This commit is contained in:
George Burgess IV 2015-09-04 21:28:13 +00:00
parent c6bbb8b69a
commit 3a03fabdd0
2 changed files with 211 additions and 39 deletions

View File

@ -492,7 +492,11 @@ namespace {
/// optimizer if we don't constant fold them here, but in an unevaluated
/// context we try to fold them immediately since the optimizer never
/// gets a chance to look at it.
EM_PotentialConstantExpressionUnevaluated
EM_PotentialConstantExpressionUnevaluated,
/// Evaluate as a constant expression. Continue evaluating if we find a
/// MemberExpr with a base that can't be evaluated.
EM_DesignatorFold,
} EvalMode;
/// Are we checking whether the expression is a potential constant
@ -595,6 +599,7 @@ namespace {
case EM_PotentialConstantExpression:
case EM_ConstantExpressionUnevaluated:
case EM_PotentialConstantExpressionUnevaluated:
case EM_DesignatorFold:
HasActiveDiagnostic = false;
return OptionalDiagnostic();
}
@ -674,6 +679,7 @@ namespace {
case EM_ConstantExpression:
case EM_ConstantExpressionUnevaluated:
case EM_ConstantFold:
case EM_DesignatorFold:
return false;
}
llvm_unreachable("Missed EvalMode case");
@ -702,10 +708,15 @@ namespace {
case EM_ConstantExpressionUnevaluated:
case EM_ConstantFold:
case EM_IgnoreSideEffects:
case EM_DesignatorFold:
return false;
}
llvm_unreachable("Missed EvalMode case");
}
bool allowInvalidBaseExpr() const {
return EvalMode == EM_DesignatorFold;
}
};
/// Object used to treat all foldable expressions as constant expressions.
@ -736,6 +747,21 @@ namespace {
}
};
/// RAII object used to treat the current evaluation as the correct pointer
/// offset fold for the current EvalMode
struct FoldOffsetRAII {
EvalInfo &Info;
EvalInfo::EvaluationMode OldMode;
explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
: Info(Info), OldMode(Info.EvalMode) {
if (!Info.checkingPotentialConstantExpression())
Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
: EvalInfo::EM_ConstantFold;
}
~FoldOffsetRAII() { Info.EvalMode = OldMode; }
};
/// RAII object used to suppress diagnostics and side-effects from a
/// speculative evaluation.
class SpeculativeEvaluationRAII {
@ -917,7 +943,8 @@ namespace {
struct LValue {
APValue::LValueBase Base;
CharUnits Offset;
unsigned CallIndex;
bool InvalidBase : 1;
unsigned CallIndex : 31;
SubobjectDesignator Designator;
const APValue::LValueBase getLValueBase() const { return Base; }
@ -938,17 +965,23 @@ namespace {
assert(V.isLValue());
Base = V.getLValueBase();
Offset = V.getLValueOffset();
InvalidBase = false;
CallIndex = V.getLValueCallIndex();
Designator = SubobjectDesignator(Ctx, V);
}
void set(APValue::LValueBase B, unsigned I = 0) {
void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
Base = B;
Offset = CharUnits::Zero();
InvalidBase = BInvalid;
CallIndex = I;
Designator = SubobjectDesignator(getType(B));
}
void setInvalid(APValue::LValueBase B, unsigned I = 0) {
set(B, I, true);
}
// Check that this LValue is not based on a null pointer. If it is, produce
// a diagnostic and mark the designator as invalid.
bool checkNullPointer(EvalInfo &Info, const Expr *E,
@ -4368,20 +4401,23 @@ public:
bool VisitMemberExpr(const MemberExpr *E) {
// Handle non-static data members.
QualType BaseTy;
bool EvalOK;
if (E->isArrow()) {
if (!EvaluatePointer(E->getBase(), Result, this->Info))
return false;
EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
} else if (E->getBase()->isRValue()) {
assert(E->getBase()->getType()->isRecordType());
if (!EvaluateTemporary(E->getBase(), Result, this->Info))
return false;
EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
BaseTy = E->getBase()->getType();
} else {
if (!this->Visit(E->getBase()))
return false;
EvalOK = this->Visit(E->getBase());
BaseTy = E->getBase()->getType();
}
if (!EvalOK) {
if (!this->Info.allowInvalidBaseExpr())
return false;
Result.setInvalid(E->getBase());
}
const ValueDecl *MD = E->getMemberDecl();
if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
@ -4793,7 +4829,7 @@ public:
bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
{ return Success(E); }
bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
{ return Success(E); }
{ return Success(E); }
bool VisitAddrLabelExpr(const AddrLabelExpr *E)
{ return Success(E); }
bool VisitCallExpr(const CallExpr *E);
@ -4919,6 +4955,7 @@ bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
unsigned Size = Info.Ctx.getTypeSize(E->getType());
uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
Result.Base = (Expr*)nullptr;
Result.InvalidBase = false;
Result.Offset = CharUnits::fromQuantity(N);
Result.CallIndex = 0;
Result.Designator.setInvalid();
@ -6211,6 +6248,26 @@ static QualType getObjectType(APValue::LValueBase B) {
return QualType();
}
/// A more selective version of E->IgnoreParenCasts for
/// TryEvaluateBuiltinObjectSize. This ignores casts/parens that serve only to
/// change the type of E.
/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
///
/// Always returns an RValue with a pointer representation.
static const Expr *ignorePointerCastsAndParens(const Expr *E) {
assert(E->isRValue() && E->getType()->hasPointerRepresentation());
auto *NoParens = E->IgnoreParens();
auto *Cast = dyn_cast<CastExpr>(NoParens);
if (Cast == nullptr || Cast->getCastKind() == CK_DerivedToBase)
return NoParens;
auto *SubExpr = Cast->getSubExpr();
if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
return NoParens;
return ignorePointerCastsAndParens(SubExpr);
}
bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
unsigned Type) {
// Determine the denoted object.
@ -6220,23 +6277,35 @@ bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
// If there are any, but we can determine the pointed-to object anyway, then
// ignore the side-effects.
SpeculativeEvaluationRAII SpeculativeEval(Info);
FoldConstant Fold(Info, true);
if (!EvaluatePointer(E->getArg(0), Base, Info))
FoldOffsetRAII Fold(Info, Type & 1);
const Expr *Ptr = ignorePointerCastsAndParens(E->getArg(0));
if (!EvaluatePointer(Ptr, Base, Info))
return false;
}
CharUnits BaseOffset = Base.getLValueOffset();
// If we point to before the start of the object, there are no
// accessible bytes.
if (BaseOffset < CharUnits::Zero())
// If we point to before the start of the object, there are no accessible
// bytes.
if (BaseOffset.isNegative())
return Success(0, E);
// MostDerivedType is null if we're dealing with a literal such as nullptr or
// (char*)0x100000. Lower it to LLVM in either case so it can figure out what
// to do with it.
// FIXME(gbiv): Try to do a better job with this in clang.
if (Base.Designator.MostDerivedType.isNull())
// In the case where we're not dealing with a subobject, we discard the
// subobject bit.
if (!Base.Designator.Invalid && Base.Designator.Entries.empty())
Type = Type & ~1U;
// If Type & 1 is 0, we need to be able to statically guarantee that the bytes
// exist. If we can't verify the base, then we can't do that.
//
// As a special case, we produce a valid object size for an unknown object
// with a known designator if Type & 1 is 1. For instance:
//
// extern struct X { char buff[32]; int a, b, c; } *p;
// int a = __builtin_object_size(p->buff + 4, 3); // returns 28
// int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
//
// This matches GCC's behavior.
if ((Type & 1) == 0 && Base.InvalidBase)
return Error(E);
// If Type & 1 is 0, the object in question is the complete object; reset to
@ -6256,16 +6325,6 @@ bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
}
}
// FIXME: We should produce a valid object size for an unknown object with a
// known designator, if Type & 1 is 1. For instance:
//
// extern struct X { char buff[32]; int a, b, c; } *p;
// int a = __builtin_object_size(p->buff + 4, 3); // returns 28
// int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
//
// This is GCC's behavior. We currently don't do this, but (hopefully) will in
// the near future.
// If it is not possible to determine which objects ptr points to at compile
// time, __builtin_object_size should return (size_t) -1 for type 0 or 1
// and (size_t) 0 for type 2 or 3.
@ -6280,14 +6339,15 @@ bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
// We got a pointer to an array. Step to its end.
AmountToAdd = End.Designator.MostDerivedArraySize -
End.Designator.Entries.back().ArrayIndex;
} else if (End.Designator.IsOnePastTheEnd) {
End.Designator.Entries.back().ArrayIndex;
} else if (End.Designator.isOnePastTheEnd()) {
// We're already pointing at the end of the object.
AmountToAdd = 0;
}
if (End.Designator.MostDerivedType->isIncompleteType() ||
End.Designator.MostDerivedType->isFunctionType())
QualType PointeeType = End.Designator.MostDerivedType;
assert(!PointeeType.isNull());
if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
return Error(E);
if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
@ -6331,6 +6391,7 @@ bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
case EvalInfo::EM_ConstantFold:
case EvalInfo::EM_EvaluateForOverflow:
case EvalInfo::EM_IgnoreSideEffects:
case EvalInfo::EM_DesignatorFold:
// Leave it to IR generation.
return Error(E);
case EvalInfo::EM_ConstantExpressionUnevaluated:

View File

@ -161,6 +161,15 @@ void test19() {
gi = __builtin_object_size(&foo.a, 2);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.a, 3);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 0);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 1);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 2);
// CHECK: store i32 4
gi = __builtin_object_size(&foo.b, 3);
}
// CHECK: @test20
@ -221,25 +230,59 @@ void test22() {
gi = __builtin_object_size(&t[9].t[10], 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t[9].t[10], 3);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 0);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 1);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 2);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[0] + sizeof(t), 3);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 0);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 1);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 2);
// CHECK: store i32 0
gi = __builtin_object_size((char*)&t[9].t[0] + 10*sizeof(t[0].t), 3);
}
struct Test23Ty { int t[10]; };
struct Test23Ty { int a; int t[10]; };
// CHECK: @test23
void test23(struct Test22Ty *p) {
void test23(struct Test23Ty *p) {
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(p, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(p, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(p, 2);
// Note: this is currently fixed at 0 because LLVM doesn't have sufficient
// data to correctly handle type=3
// CHECK: store i32 0
gi = __builtin_object_size(p, 3);
}
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(&p->a, 0);
// CHECK: store i32 4
gi = __builtin_object_size(&p->a, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(&p->a, 2);
// CHECK: store i32 4
gi = __builtin_object_size(&p->a, 3);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(&p->t[5], 0);
// CHECK: store i32 20
gi = __builtin_object_size(&p->t[5], 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(&p->t[5], 2);
// CHECK: store i32 20
gi = __builtin_object_size(&p->t[5], 3);
}
// PR24493 -- ICE if __builtin_object_size called with NULL and (Type & 1) != 0
// CHECK: @test24
@ -280,3 +323,71 @@ void test25() {
// CHECK: store i32 0
gi = __builtin_object_size((void*)0 + 0x1000, 3);
}
// CHECK: @test26
void test26() {
struct { int v[10]; } t[10];
// CHECK: store i32 316
gi = __builtin_object_size(&t[1].v[11], 0);
// CHECK: store i32 312
gi = __builtin_object_size(&t[1].v[12], 1);
// CHECK: store i32 308
gi = __builtin_object_size(&t[1].v[13], 2);
// CHECK: store i32 0
gi = __builtin_object_size(&t[1].v[14], 3);
}
struct Test27IncompleteTy;
// CHECK: @test27
void test27(struct Test27IncompleteTy *t) {
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(t, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
gi = __builtin_object_size(t, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 true)
gi = __builtin_object_size(t, 2);
// Note: this is currently fixed at 0 because LLVM doesn't have sufficient
// data to correctly handle type=3
// CHECK: store i32 0
gi = __builtin_object_size(t, 3);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size(&test27, 0);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 false)
gi = __builtin_object_size(&test27, 1);
// CHECK: call i64 @llvm.objectsize.i64.p0i8(i8* {{.*}}, i1 true)
gi = __builtin_object_size(&test27, 2);
// Note: this is currently fixed at 0 because LLVM doesn't have sufficient
// data to correctly handle type=3
// CHECK: store i32 0
gi = __builtin_object_size(&test27, 3);
}
// The intent of this test is to ensure that __builtin_object_size treats `&foo`
// and `(T*)&foo` identically, when used as the pointer argument.
// CHECK: @test28
void test28() {
struct { int v[10]; } t[10];
#define addCasts(s) ((char*)((short*)(s)))
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 0);
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 1);
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 2);
// CHECK: store i32 360
gi = __builtin_object_size(addCasts(&t[1]), 3);
// CHECK: store i32 356
gi = __builtin_object_size(addCasts(&t[1].v[1]), 0);
// CHECK: store i32 36
gi = __builtin_object_size(addCasts(&t[1].v[1]), 1);
// CHECK: store i32 356
gi = __builtin_object_size(addCasts(&t[1].v[1]), 2);
// CHECK: store i32 36
gi = __builtin_object_size(addCasts(&t[1].v[1]), 3);
#undef addCasts
}