Thread LLVMContext through the constant folding APIs, which touches a lot of files.

llvm-svn: 74844
This commit is contained in:
Owen Anderson 2009-07-06 18:42:36 +00:00
parent 0578e43862
commit 39f00cc1d4
21 changed files with 256 additions and 195 deletions

View File

@ -22,18 +22,20 @@ namespace llvm {
class TargetData;
class Function;
class Type;
class LLVMContext;
/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction. If successful, the constant result is returned, if not, null
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *ConstantFoldInstruction(Instruction *I, const TargetData *TD = 0);
Constant *ConstantFoldInstruction(Instruction *I, LLVMContext* Context,
const TargetData *TD = 0);
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *ConstantFoldConstantExpression(ConstantExpr *CE,
Constant *ConstantFoldConstantExpression(ConstantExpr *CE, LLVMContext* Context,
const TargetData *TD = 0);
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
@ -44,6 +46,7 @@ Constant *ConstantFoldConstantExpression(ConstantExpr *CE,
///
Constant *ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant*const * Ops, unsigned NumOps,
LLVMContext* Context,
const TargetData *TD = 0);
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
@ -52,13 +55,15 @@ Constant *ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
///
Constant *ConstantFoldCompareInstOperands(unsigned Predicate,
Constant*const * Ops, unsigned NumOps,
LLVMContext* Context,
const TargetData *TD = 0);
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE);
Constant *ConstantFoldLoadThroughGEPConstantExpr(Constant *C, ConstantExpr *CE,
LLVMContext* Context);
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.

View File

@ -36,6 +36,7 @@ namespace llvm {
class Type;
class ScalarEvolution;
class TargetData;
class LLVMContext;
/// SCEV - This class represents an analyzed expression in the program. These
/// are opaque objects that the client is not allowed to do much with
@ -354,6 +355,8 @@ namespace llvm {
static char ID; // Pass identification, replacement for typeid
ScalarEvolution();
LLVMContext* getContext() const { return Context; }
/// isSCEVable - Test if values of the given type are analyzable within
/// the SCEV framework. This primarily includes integer types, and it
/// can optionally include pointer types if the ScalarEvolution class

View File

@ -37,7 +37,7 @@ namespace llvm {
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
explicit SCEVExpander(ScalarEvolution &se)
: SE(se), Builder(TargetFolder(se.TD)) {}
: SE(se), Builder(TargetFolder(se.TD, se.getContext())) {}
/// clear - Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or

View File

@ -25,21 +25,24 @@
namespace llvm {
class TargetData;
class LLVMContext;
/// TargetFolder - Create constants with target dependent folding.
class TargetFolder {
const TargetData *TD;
LLVMContext* Context;
/// Fold - Fold the constant using target specific information.
Constant *Fold(Constant *C) const {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
if (Constant *CF = ConstantFoldConstantExpression(CE, TD))
if (Constant *CF = ConstantFoldConstantExpression(CE, Context, TD))
return CF;
return C;
}
public:
explicit TargetFolder(const TargetData *TheTD) : TD(TheTD) {}
explicit TargetFolder(const TargetData *TheTD, LLVMContext* C) :
TD(TheTD), Context(C) {}
//===--------------------------------------------------------------------===//
// Binary Operators

View File

@ -22,6 +22,7 @@
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallVector.h"
@ -394,13 +395,13 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
// the base pointers.
while (isGEP(GEP1->getOperand(0)) &&
GEP1->getOperand(1) ==
Constant::getNullValue(GEP1->getOperand(1)->getType()))
Context->getNullValue(GEP1->getOperand(1)->getType()))
GEP1 = cast<User>(GEP1->getOperand(0));
const Value *BasePtr1 = GEP1->getOperand(0);
while (isGEP(GEP2->getOperand(0)) &&
GEP2->getOperand(1) ==
Constant::getNullValue(GEP2->getOperand(1)->getType()))
Context->getNullValue(GEP2->getOperand(1)->getType()))
GEP2 = cast<User>(GEP2->getOperand(0));
const Value *BasePtr2 = GEP2->getOperand(0);
@ -480,7 +481,7 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
for (unsigned i = 0; i != GEPOperands.size(); ++i)
if (!isa<ConstantInt>(GEPOperands[i]))
GEPOperands[i] =
Constant::getNullValue(GEPOperands[i]->getType());
Context->getNullValue(GEPOperands[i]->getType());
int64_t Offset =
getTargetData().getIndexedOffset(BasePtr->getType(),
&GEPOperands[0],
@ -498,16 +499,16 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
// This function is used to determine if the indices of two GEP instructions are
// equal. V1 and V2 are the indices.
static bool IndexOperandsEqual(Value *V1, Value *V2) {
static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext* Context) {
if (V1->getType() == V2->getType())
return V1 == V2;
if (Constant *C1 = dyn_cast<Constant>(V1))
if (Constant *C2 = dyn_cast<Constant>(V2)) {
// Sign extend the constants to long types, if necessary
if (C1->getType() != Type::Int64Ty)
C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
C1 = Context->getConstantExprSExt(C1, Type::Int64Ty);
if (C2->getType() != Type::Int64Ty)
C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
C2 = Context->getConstantExprSExt(C2, Type::Int64Ty);
return C1 == C2;
}
return false;
@ -535,7 +536,8 @@ BasicAliasAnalysis::CheckGEPInstructions(
unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
unsigned UnequalOper = 0;
while (UnequalOper != MinOperands &&
IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
Context)) {
// Advance through the type as we go...
++UnequalOper;
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
@ -600,9 +602,9 @@ BasicAliasAnalysis::CheckGEPInstructions(
if (G1OC->getType() != G2OC->getType()) {
// Sign extend both operands to long.
if (G1OC->getType() != Type::Int64Ty)
G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
G1OC = Context->getConstantExprSExt(G1OC, Type::Int64Ty);
if (G2OC->getType() != Type::Int64Ty)
G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
G2OC = Context->getConstantExprSExt(G2OC, Type::Int64Ty);
GEP1Ops[FirstConstantOper] = G1OC;
GEP2Ops[FirstConstantOper] = G2OC;
}
@ -689,7 +691,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
// TargetData::getIndexedOffset.
for (i = 0; i != MaxOperands; ++i)
if (!isa<ConstantInt>(GEP1Ops[i]))
GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
GEP1Ops[i] = Context->getNullValue(GEP1Ops[i]->getType());
// Okay, now get the offset. This is the relative offset for the full
// instruction.
const TargetData &TD = getTargetData();
@ -734,7 +736,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
const Type *ZeroIdxTy = GEPPointerTy;
for (unsigned i = 0; i != FirstConstantOper; ++i) {
if (!isa<StructType>(ZeroIdxTy))
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Type::Int32Ty);
if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
@ -749,7 +751,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
// If they are equal, use a zero index...
if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
if (!isa<ConstantInt>(Op1))
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Op1->getType());
// Otherwise, just keep the constants we have.
} else {
if (Op1) {
@ -775,9 +777,11 @@ BasicAliasAnalysis::CheckGEPInstructions(
// value possible.
//
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
GEP1Ops[i] =
Context->getConstantInt(Type::Int64Ty,AT->getNumElements()-1);
else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
GEP1Ops[i] =
Context->getConstantInt(Type::Int64Ty,VT->getNumElements()-1);
}
}
@ -792,7 +796,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
return MayAlias; // Be conservative with out-of-range accesses
}
} else { // Conservatively assume the minimum value for this index
GEP2Ops[i] = Constant::getNullValue(Op2->getType());
GEP2Ops[i] = Context->getNullValue(Op2->getType());
}
}
}

View File

@ -19,6 +19,7 @@
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Target/TargetData.h"
@ -92,7 +93,8 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const TargetData *TD){
Constant *Op1, const TargetData *TD,
LLVMContext* Context){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
@ -110,7 +112,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
}
}
@ -121,6 +123,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
const Type *ResultTy,
LLVMContext* Context,
const TargetData *TD) {
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
@ -147,14 +150,14 @@ static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
(Value**)Ops+1, NumOps-1);
Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset+BasePtr);
return ConstantExpr::getIntToPtr(C, ResultTy);
Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
return Context->getConstantExprIntToPtr(C, ResultTy);
}
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// targetdata. Return 0 if unfoldable.
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
const TargetData &TD) {
const TargetData &TD, LLVMContext* Context) {
// If this is a bitcast from constant vector -> vector, fold it.
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
@ -180,24 +183,24 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
if (DstEltTy->isFloatingPoint()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
const Type *DestIVTy = VectorType::get(IntegerType::get(FPWidth),
NumDstElt);
const Type *DestIVTy = Context->getVectorType(
Context->getIntegerType(FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, TD);
C = FoldBitCast(C, DestIVTy, TD, Context);
if (!C) return 0;
// Finally, VMCore can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
return Context->getConstantExprBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPoint()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
const Type *SrcIVTy = VectorType::get(IntegerType::get(FPWidth),
NumSrcElt);
const Type *SrcIVTy = Context->getVectorType(
Context->getIntegerType(FPWidth), NumSrcElt);
// Ask VMCore to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
C = Context->getConstantExprBitCast(C, SrcIVTy);
CV = dyn_cast<ConstantVector>(C);
if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
}
@ -211,7 +214,7 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
Constant *Zero = Context->getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
@ -224,15 +227,15 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
if (!Src) return 0; // Reject constantexpr elements.
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
Src = Context->getConstantExprZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
Src = Context->getConstantExprShl(Src,
Context->getConstantInt(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
Elt = Context->getConstantExprOr(Elt, Src);
}
Result.push_back(Elt);
}
@ -250,17 +253,17 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
Constant *Elt = Context->getConstantExprLShr(Src,
Context->getConstantInt(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
}
}
}
return ConstantVector::get(Result.data(), Result.size());
return Context->getConstantVector(Result.data(), Result.size());
}
}
@ -278,10 +281,11 @@ static Constant *FoldBitCast(Constant *C, const Type *DestTy,
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext* Context,
const TargetData *TD) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (PN->getNumIncomingValues() == 0)
return UndefValue::get(PN->getType());
return Context->getUndef(PN->getType());
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
if (Result == 0) return 0;
@ -306,16 +310,18 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
Ops.data(), Ops.size(), TD);
Ops.data(), Ops.size(),
Context, TD);
else
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Ops.data(), Ops.size(), TD);
Ops.data(), Ops.size(), Context, TD);
}
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
LLVMContext* Context,
const TargetData *TD) {
SmallVector<Constant*, 8> Ops;
for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
@ -323,10 +329,11 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(),
Ops.data(), Ops.size(), TD);
Ops.data(), Ops.size(),
Context, TD);
else
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
Ops.data(), Ops.size(), TD);
Ops.data(), Ops.size(), Context, TD);
}
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
@ -337,14 +344,16 @@ Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant* const* Ops, unsigned NumOps,
LLVMContext* Context,
const TargetData *TD) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
Context))
return C;
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
}
switch (Opcode) {
@ -368,15 +377,15 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
Constant *Mask =
ConstantInt::get(APInt::getLowBitsSet(InWidth,
Context->getConstantInt(APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
Input = ConstantExpr::getAnd(Input, Mask);
Input = Context->getConstantExprAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, DestTy, false);
return Context->getConstantExprIntegerCast(Input, DestTy, false);
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size. This requires knowing the width of a
@ -387,8 +396,8 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
CE->getType()->getScalarSizeInBits()) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *Input = CE->getOperand(0);
Constant *C = FoldBitCast(Input, DestTy, *TD);
return C ? C : ConstantExpr::getBitCast(Input, DestTy);
Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
return C ? C : Context->getConstantExprBitCast(Input, DestTy);
}
// If there's a constant offset added to the integer value before
// it is casted back to a pointer, see if the expression can be
@ -411,17 +420,18 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
AT->getNumElements()))) {
Constant *Index[] = {
Constant::getNullValue(CE->getType()),
ConstantInt::get(ElemIdx)
Context->getNullValue(CE->getType()),
Context->getConstantInt(ElemIdx)
};
return ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
return
Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
}
}
}
}
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
@ -431,25 +441,25 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
if (TD)
if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD))
if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
return C;
return ConstantExpr::getBitCast(Ops[0], DestTy);
return Context->getConstantExprBitCast(Ops[0], DestTy);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
}
}
@ -460,6 +470,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant*const * Ops,
unsigned NumOps,
LLVMContext* Context,
const TargetData *TD) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
@ -474,10 +485,11 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
Context, TD);
}
// Only do this transformation if the int is intptrty in size, otherwise
@ -485,9 +497,10 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
// FIXME!
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
Context, TD);
}
}
@ -498,12 +511,13 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
Constant *NewOps[] = { C0, C1 };
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
Context, TD);
}
// Only do this transformation if the int is intptrty in size, otherwise
@ -514,12 +528,13 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *NewOps[] = {
CE0->getOperand(0), CE1->getOperand(0)
};
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
Context, TD);
}
}
}
}
return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
}
@ -527,8 +542,9 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
ConstantExpr *CE,
LLVMContext* Context) {
if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
return 0; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
@ -543,9 +559,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
C = CS->getOperand(El);
} else if (isa<ConstantAggregateZero>(C)) {
C = Constant::getNullValue(STy->getElementType(El));
C = Context->getNullValue(STy->getElementType(El));
} else if (isa<UndefValue>(C)) {
C = UndefValue::get(STy->getElementType(El));
C = Context->getUndef(STy->getElementType(El));
} else {
return 0;
}
@ -556,9 +572,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
C = CA->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(ATy->getElementType());
C = Context->getNullValue(ATy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(ATy->getElementType());
C = Context->getUndef(ATy->getElementType());
else
return 0;
} else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
@ -567,9 +583,9 @@ Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
C = CP->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(PTy->getElementType());
C = Context->getNullValue(PTy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(PTy->getElementType());
C = Context->getUndef(PTy->getElementType());
else
return 0;
} else {
@ -664,7 +680,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty) {
const Type *Ty, LLVMContext* Context) {
errno = 0;
V = NativeFP(V);
if (errno != 0) {
@ -673,16 +689,17 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
}
if (Ty == Type::FloatTy)
return ConstantFP::get(APFloat((float)V));
return Context->getConstantFP(APFloat((float)V));
if (Ty == Type::DoubleTy)
return ConstantFP::get(APFloat(V));
return Context->getConstantFP(APFloat(V));
assert(0 && "Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W,
const Type *Ty) {
const Type *Ty,
LLVMContext* Context) {
errno = 0;
V = NativeFP(V, W);
if (errno != 0) {
@ -691,9 +708,9 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
}
if (Ty == Type::FloatTy)
return ConstantFP::get(APFloat((float)V));
return Context->getConstantFP(APFloat((float)V));
if (Ty == Type::DoubleTy)
return ConstantFP::get(APFloat(V));
return Context->getConstantFP(APFloat(V));
assert(0 && "Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
@ -705,6 +722,7 @@ Constant *
llvm::ConstantFoldCall(Function *F,
Constant* const* Operands, unsigned NumOperands) {
if (!F->hasName()) return 0;
LLVMContext* Context = F->getContext();
const char *Str = F->getNameStart();
unsigned Len = F->getNameLen();
@ -722,75 +740,75 @@ llvm::ConstantFoldCall(Function *F,
switch (Str[0]) {
case 'a':
if (Len == 4 && !strcmp(Str, "acos"))
return ConstantFoldFP(acos, V, Ty);
return ConstantFoldFP(acos, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "asin"))
return ConstantFoldFP(asin, V, Ty);
return ConstantFoldFP(asin, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "atan"))
return ConstantFoldFP(atan, V, Ty);
return ConstantFoldFP(atan, V, Ty, Context);
break;
case 'c':
if (Len == 4 && !strcmp(Str, "ceil"))
return ConstantFoldFP(ceil, V, Ty);
return ConstantFoldFP(ceil, V, Ty, Context);
else if (Len == 3 && !strcmp(Str, "cos"))
return ConstantFoldFP(cos, V, Ty);
return ConstantFoldFP(cos, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "cosh"))
return ConstantFoldFP(cosh, V, Ty);
return ConstantFoldFP(cosh, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "cosf"))
return ConstantFoldFP(cos, V, Ty);
return ConstantFoldFP(cos, V, Ty, Context);
break;
case 'e':
if (Len == 3 && !strcmp(Str, "exp"))
return ConstantFoldFP(exp, V, Ty);
return ConstantFoldFP(exp, V, Ty, Context);
break;
case 'f':
if (Len == 4 && !strcmp(Str, "fabs"))
return ConstantFoldFP(fabs, V, Ty);
return ConstantFoldFP(fabs, V, Ty, Context);
else if (Len == 5 && !strcmp(Str, "floor"))
return ConstantFoldFP(floor, V, Ty);
return ConstantFoldFP(floor, V, Ty, Context);
break;
case 'l':
if (Len == 3 && !strcmp(Str, "log") && V > 0)
return ConstantFoldFP(log, V, Ty);
return ConstantFoldFP(log, V, Ty, Context);
else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
return ConstantFoldFP(log10, V, Ty);
return ConstantFoldFP(log10, V, Ty, Context);
else if (!strcmp(Str, "llvm.sqrt.f32") ||
!strcmp(Str, "llvm.sqrt.f64")) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
return ConstantFoldFP(sqrt, V, Ty, Context);
else // Undefined
return Constant::getNullValue(Ty);
return Context->getNullValue(Ty);
}
break;
case 's':
if (Len == 3 && !strcmp(Str, "sin"))
return ConstantFoldFP(sin, V, Ty);
return ConstantFoldFP(sin, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "sinh"))
return ConstantFoldFP(sinh, V, Ty);
return ConstantFoldFP(sinh, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
return ConstantFoldFP(sqrt, V, Ty);
return ConstantFoldFP(sqrt, V, Ty, Context);
else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
return ConstantFoldFP(sqrt, V, Ty);
return ConstantFoldFP(sqrt, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "sinf"))
return ConstantFoldFP(sin, V, Ty);
return ConstantFoldFP(sin, V, Ty, Context);
break;
case 't':
if (Len == 3 && !strcmp(Str, "tan"))
return ConstantFoldFP(tan, V, Ty);
return ConstantFoldFP(tan, V, Ty, Context);
else if (Len == 4 && !strcmp(Str, "tanh"))
return ConstantFoldFP(tanh, V, Ty);
return ConstantFoldFP(tanh, V, Ty, Context);
break;
default:
break;
}
} else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
return ConstantInt::get(Op->getValue().byteSwap());
return Context->getConstantInt(Op->getValue().byteSwap());
else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
return ConstantInt::get(Ty, Op->getValue().countPopulation());
return Context->getConstantInt(Ty, Op->getValue().countPopulation());
else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
}
} else if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
@ -805,18 +823,18 @@ llvm::ConstantFoldCall(Function *F,
Op2->getValueAPF().convertToDouble();
if (Len == 3 && !strcmp(Str, "pow")) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
} else if (Len == 4 && !strcmp(Str, "fmod")) {
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
} else if (Len == 5 && !strcmp(Str, "atan2")) {
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
}
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (!strcmp(Str, "llvm.powi.f32")) {
return ConstantFP::get(APFloat((float)std::pow((float)Op1V,
return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
} else if (!strcmp(Str, "llvm.powi.f64")) {
return ConstantFP::get(APFloat((double)std::pow((double)Op1V,
return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
}

View File

@ -3420,6 +3420,7 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
if (Constant *C = dyn_cast<Constant>(V)) return C;
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Instruction *I = cast<Instruction>(V);
LLVMContext* Context = I->getParent()->getContext();
std::vector<Constant*> Operands;
Operands.resize(I->getNumOperands());
@ -3431,10 +3432,12 @@ static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
&Operands[0], Operands.size());
&Operands[0], Operands.size(),
Context);
else
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
&Operands[0], Operands.size());
&Operands[0], Operands.size(),
Context);
}
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
@ -3636,10 +3639,11 @@ const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Constant *C;
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
C = ConstantFoldCompareInstOperands(CI->getPredicate(),
&Operands[0], Operands.size());
&Operands[0], Operands.size(),
Context);
else
C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
&Operands[0], Operands.size());
&Operands[0], Operands.size(), Context);
Pair.first->second = C;
return getSCEV(C);
}

View File

@ -282,7 +282,8 @@ static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
/// users of the global, cleaning up the obvious ones. This is largely just a
/// quick scan over the use list to clean up the easy and obvious cruft. This
/// returns true if it made a change.
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
LLVMContext* Context) {
bool Changed = false;
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
User *U = *UI++;
@ -302,12 +303,12 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
if (CE->getOpcode() == Instruction::GetElementPtr) {
Constant *SubInit = 0;
if (Init)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
Changed |= CleanupConstantGlobalUsers(CE, SubInit);
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
} else if (CE->getOpcode() == Instruction::BitCast &&
isa<PointerType>(CE->getType())) {
// Pointer cast, delete any stores and memsets to the global.
Changed |= CleanupConstantGlobalUsers(CE, 0);
Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
}
if (CE->use_empty()) {
@ -321,11 +322,11 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
Constant *SubInit = 0;
if (!isa<ConstantExpr>(GEP->getOperand(0))) {
ConstantExpr *CE =
dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
}
Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
if (GEP->use_empty()) {
GEP->eraseFromParent();
@ -343,7 +344,7 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
if (SafeToDestroyConstant(C)) {
C->destroyConstant();
// This could have invalidated UI, start over from scratch.
CleanupConstantGlobalUsers(V, Init);
CleanupConstantGlobalUsers(V, Init, Context);
return true;
}
}
@ -783,7 +784,7 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
// nor is the global.
if (AllNonStoreUsesGone) {
DOUT << " *** GLOBAL NOW DEAD!\n";
CleanupConstantGlobalUsers(GV, 0);
CleanupConstantGlobalUsers(GV, 0, Context);
if (GV->use_empty()) {
GV->eraseFromParent();
++NumDeleted;
@ -795,10 +796,10 @@ static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
/// instructions that are foldable.
static void ConstantPropUsersOf(Value *V) {
static void ConstantPropUsersOf(Value *V, LLVMContext* Context) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
if (Instruction *I = dyn_cast<Instruction>(*UI++))
if (Constant *NewC = ConstantFoldInstruction(I)) {
if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
I->replaceAllUsesWith(NewC);
// Advance UI to the next non-I use to avoid invalidating it!
@ -925,9 +926,9 @@ static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
// To further other optimizations, loop over all users of NewGV and try to
// constant prop them. This will promote GEP instructions with constant
// indices into GEP constant-exprs, which will allow global-opt to hack on it.
ConstantPropUsersOf(NewGV);
ConstantPropUsersOf(NewGV, Context);
if (RepValue != NewGV)
ConstantPropUsersOf(RepValue);
ConstantPropUsersOf(RepValue, Context);
return NewGV;
}
@ -1717,7 +1718,8 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
// Delete any stores we can find to the global. We may not be able to
// make it completely dead though.
bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
Context);
// If the global is dead now, delete it.
if (GV->use_empty()) {
@ -1732,7 +1734,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->setConstant(true);
// Clean up any obviously simplifiable users now.
CleanupConstantGlobalUsers(GV, GV->getInitializer());
CleanupConstantGlobalUsers(GV, GV->getInitializer(), Context);
// If the global is dead now, just nuke it.
if (GV->use_empty()) {
@ -1762,7 +1764,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
GV->setInitializer(SOVConstant);
// Clean up any obviously simplifiable users now.
CleanupConstantGlobalUsers(GV, GV->getInitializer());
CleanupConstantGlobalUsers(GV, GV->getInitializer(), Context);
if (GV->use_empty()) {
DOUT << " *** Substituting initializer allowed us to "
@ -2007,7 +2009,7 @@ static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
/// enough for us to understand. In particular, if it is a cast of something,
/// we punt. We basically just support direct accesses to globals and GEP's of
/// globals. This should be kept up to date with CommitValueTo.
static bool isSimpleEnoughPointerToCommit(Constant *C) {
static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext* Context) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
@ -2021,7 +2023,8 @@ static bool isSimpleEnoughPointerToCommit(Constant *C) {
if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
return GV->hasInitializer() &&
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
Context);
}
return false;
}
@ -2113,7 +2116,8 @@ static void CommitValueTo(Constant *Val, Constant *Addr,
/// P after the stores reflected by 'memory' have been performed. If we can't
/// decide, return null.
static Constant *ComputeLoadResult(Constant *P,
const DenseMap<Constant*, Constant*> &Memory) {
const DenseMap<Constant*, Constant*> &Memory,
LLVMContext* Context) {
// If this memory location has been recently stored, use the stored value: it
// is the most up-to-date.
DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
@ -2132,7 +2136,8 @@ static Constant *ComputeLoadResult(Constant *P,
isa<GlobalVariable>(CE->getOperand(0))) {
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
if (GV->hasInitializer())
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
Context);
}
return 0; // don't know how to evaluate.
@ -2179,7 +2184,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
if (SI->isVolatile()) return false; // no volatile accesses.
Constant *Ptr = getVal(Values, SI->getOperand(1));
if (!isSimpleEnoughPointerToCommit(Ptr))
if (!isSimpleEnoughPointerToCommit(Ptr, Context))
// If this is too complex for us to commit, reject it.
return false;
Constant *Val = getVal(Values, SI->getOperand(0));
@ -2212,7 +2217,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
if (LI->isVolatile()) return false; // no volatile accesses.
InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
MutatedMemory);
MutatedMemory, Context);
if (InstResult == 0) return false; // Could not evaluate load.
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.

View File

@ -21,6 +21,7 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
@ -62,10 +63,10 @@ bool FunctionProfiler::runOnModule(Module &M) {
if (!I->isDeclaration())
++NumFunctions;
const Type *ATy = ArrayType::get(Type::Int32Ty, NumFunctions);
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumFunctions);
GlobalVariable *Counters =
new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(ATy), "FuncProfCounters", &M);
Context->getNullValue(ATy), "FuncProfCounters", &M);
// Instrument all of the functions...
unsigned i = 0;
@ -107,10 +108,10 @@ bool BlockProfiler::runOnModule(Module &M) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
NumBlocks += I->size();
const Type *ATy = ArrayType::get(Type::Int32Ty, NumBlocks);
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumBlocks);
GlobalVariable *Counters =
new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(ATy), "BlockProfCounters", &M);
Context->getNullValue(ATy), "BlockProfCounters", &M);
// Instrument all of the blocks...
unsigned i = 0;

View File

@ -20,6 +20,7 @@
#include "ProfilingUtils.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
@ -63,10 +64,10 @@ bool EdgeProfiler::runOnModule(Module &M) {
NumEdges += BB->getTerminator()->getNumSuccessors();
}
const Type *ATy = ArrayType::get(Type::Int32Ty, NumEdges);
const Type *ATy = Context->getArrayType(Type::Int32Ty, NumEdges);
GlobalVariable *Counters =
new GlobalVariable(ATy, false, GlobalValue::InternalLinkage,
Constant::getNullValue(ATy), "EdgeProfCounters", &M);
Context->getNullValue(ATy), "EdgeProfCounters", &M);
// Instrument all of the edges...
unsigned i = 0;

View File

@ -18,13 +18,15 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
GlobalValue *Array) {
LLVMContext* Context = MainFn->getContext();
const Type *ArgVTy =
PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
const PointerType *UIntPtr = PointerType::getUnqual(Type::Int32Ty);
Context->getPointerTypeUnqual(Context->getPointerTypeUnqual(Type::Int8Ty));
const PointerType *UIntPtr = Context->getPointerTypeUnqual(Type::Int32Ty);
Module &M = *MainFn->getParent();
Constant *InitFn = M.getOrInsertFunction(FnName, Type::Int32Ty, Type::Int32Ty,
ArgVTy, UIntPtr, Type::Int32Ty,
@ -33,27 +35,27 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
// This could force argc and argv into programs that wouldn't otherwise have
// them, but instead we just pass null values in.
std::vector<Value*> Args(4);
Args[0] = Constant::getNullValue(Type::Int32Ty);
Args[1] = Constant::getNullValue(ArgVTy);
Args[0] = Context->getNullValue(Type::Int32Ty);
Args[1] = Context->getNullValue(ArgVTy);
// Skip over any allocas in the entry block.
BasicBlock *Entry = MainFn->begin();
BasicBlock::iterator InsertPos = Entry->begin();
while (isa<AllocaInst>(InsertPos)) ++InsertPos;
std::vector<Constant*> GEPIndices(2, Constant::getNullValue(Type::Int32Ty));
std::vector<Constant*> GEPIndices(2, Context->getNullValue(Type::Int32Ty));
unsigned NumElements = 0;
if (Array) {
Args[2] = ConstantExpr::getGetElementPtr(Array, &GEPIndices[0],
Args[2] = Context->getConstantExprGetElementPtr(Array, &GEPIndices[0],
GEPIndices.size());
NumElements =
cast<ArrayType>(Array->getType()->getElementType())->getNumElements();
} else {
// If this profiling instrumentation doesn't have a constant array, just
// pass null.
Args[2] = ConstantPointerNull::get(UIntPtr);
Args[2] = Context->getConstantPointerNull(UIntPtr);
}
Args[3] = ConstantInt::get(Type::Int32Ty, NumElements);
Args[3] = Context->getConstantInt(Type::Int32Ty, NumElements);
Instruction *InitCall = CallInst::Create(InitFn, Args.begin(), Args.end(),
"newargc", InsertPos);
@ -99,6 +101,8 @@ void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
GlobalValue *CounterArray) {
LLVMContext* Context = BB->getContext();
// Insert the increment after any alloca or PHI instructions...
BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
while (isa<AllocaInst>(InsertPos))
@ -106,15 +110,16 @@ void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
Indices[0] = Constant::getNullValue(Type::Int32Ty);
Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
Indices[0] = Context->getNullValue(Type::Int32Ty);
Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
Constant *ElementPtr =
ConstantExpr::getGetElementPtr(CounterArray, &Indices[0], Indices.size());
Context->getConstantExprGetElementPtr(CounterArray, &Indices[0],
Indices.size());
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos);
Value *NewVal = BinaryOperator::Create(Instruction::Add, OldVal,
ConstantInt::get(Type::Int32Ty, 1),
Context->getConstantInt(Type::Int32Ty, 1),
"NewFuncCounter", InsertPos);
new StoreInst(NewVal, ElementPtr, InsertPos);
}

View File

@ -33,6 +33,7 @@
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Constants.h"
@ -195,7 +196,7 @@ static void getBackEdges(Function& F, T& BackEdges);
GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t,
uint64_t resetval) : T(t) {
ConstantInt* Init = ConstantInt::get(T, resetval);
ConstantInt* Init = M.getContext().getConstantInt(T, resetval);
ResetValue = Init;
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
Init, "RandomSteeringCounter", &M);
@ -207,14 +208,16 @@ void GlobalRandomCounter::PrepFunction(Function* F) {}
void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
LLVMContext* Context = bb->getContext();
//decrement counter
LoadInst* l = new LoadInst(Counter, "counter", t);
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l,
Context->getConstantInt(T, 0),
"countercc", t);
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
"counternew", t);
new StoreInst(nv, Counter, t);
t->setCondition(s);
@ -232,7 +235,7 @@ void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t,
uint64_t resetval)
: AI(0), T(t) {
ConstantInt* Init = ConstantInt::get(T, resetval);
ConstantInt* Init = M.getContext().getConstantInt(T, resetval);
ResetValue = Init;
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
Init, "RandomSteeringCounter", &M);
@ -279,14 +282,16 @@ void GlobalRandomCounterOpt::PrepFunction(Function* F) {
void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
LLVMContext* Context = bb->getContext();
//decrement counter
LoadInst* l = new LoadInst(AI, "counter", t);
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l,
Context->getConstantInt(T, 0),
"countercc", t);
Value* nv = BinaryOperator::CreateSub(l, ConstantInt::get(T, 1),
Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
"counternew", t);
new StoreInst(nv, AI, t);
t->setCondition(s);
@ -312,14 +317,15 @@ void CycleCounter::PrepFunction(Function* F) {}
void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
LLVMContext* Context = bb->getContext();
CallInst* c = CallInst::Create(F, "rdcc", t);
BinaryOperator* b =
BinaryOperator::CreateAnd(c, ConstantInt::get(Type::Int64Ty, rm),
BinaryOperator::CreateAnd(c, Context->getConstantInt(Type::Int64Ty, rm),
"mrdcc", t);
ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
ConstantInt::get(Type::Int64Ty, 0),
Context->getConstantInt(Type::Int64Ty, 0),
"mrdccc", t);
t->setCondition(s);
@ -345,16 +351,16 @@ void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNu
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
Indices[0] = Constant::getNullValue(Type::Int32Ty);
Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray,
Indices[0] = Context->getNullValue(Type::Int32Ty);
Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
Constant *ElementPtr = Context->getConstantExprGetElementPtr(CounterArray,
&Indices[0], 2);
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
profcode.insert(OldVal);
Value *NewVal = BinaryOperator::CreateAdd(OldVal,
ConstantInt::get(Type::Int32Ty, 1),
Context->getConstantInt(Type::Int32Ty, 1),
"NewCounter", InsertPos);
profcode.insert(NewVal);
profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
@ -475,7 +481,7 @@ void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F)
//b:
BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
ConstantInt::get(Type::Int1Ty, true), bbCp);
Context->getConstantInt(Type::Int1Ty, true), bbCp);
//c:
{
TerminatorInst* iB = src->getTerminator();
@ -532,7 +538,7 @@ bool ProfilerRS::runOnFunction(Function& F) {
ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
cast<BasicBlock>(
Translate(T->getSuccessor(0))),
ConstantInt::get(Type::Int1Ty,
Context->getConstantInt(Type::Int1Ty,
true)));
//do whatever is needed now that the function is duplicated

View File

@ -67,7 +67,7 @@ bool ConstantPropagation::runOnFunction(Function &F) {
WorkList.erase(WorkList.begin()); // Get an element from the worklist...
if (!I->use_empty()) // Don't muck with dead instructions...
if (Constant *C = ConstantFoldInstruction(I)) {
if (Constant *C = ConstantFoldInstruction(I, Context)) {
// Add all of the users of this instruction to the worklist, they might
// be constant propagatable now...
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();

View File

@ -11598,7 +11598,8 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
Context))
return ReplaceInstUsesWith(LI, V);
if (CE->getOperand(0)->isNullValue()) {
// Insert a new store to null instruction before the load to indicate
@ -12876,7 +12877,7 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
}
// ConstantProp instruction if trivially constant.
if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
Inst->replaceAllUsesWith(C);
++NumConstProp;
@ -12991,7 +12992,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
}
// Instruction isn't dead, see if we can constant propagate it.
if (Constant *C = ConstantFoldInstruction(I, TD)) {
if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) {
DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
// Add operands to the worklist.
@ -13011,7 +13012,8 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
// See if we can constant fold its operands.
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i))
if (Constant *NewC = ConstantFoldConstantExpression(CE, TD))
if (Constant *NewC = ConstantFoldConstantExpression(CE,
F.getContext(), TD))
if (NewC != CE) {
i->set(NewC);
Changed = true;

View File

@ -982,7 +982,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
BI = NewBB->begin();
for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
Instruction *Inst = BI++;
if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
continue;

View File

@ -986,7 +986,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
Worklist.pop_back();
// Simple constant folding.
if (Constant *C = ConstantFoldInstruction(I)) {
if (Constant *C = ConstantFoldInstruction(I, Context)) {
ReplaceUsesOfWith(I, C, Worklist, L, LPM);
continue;
}

View File

@ -1158,7 +1158,8 @@ void SCCPSolver::visitLoadInst(LoadInst &I) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
Context)) {
markConstant(IV, &I, V);
return;
}

View File

@ -358,7 +358,7 @@ void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) {
Instruction *Inst = BI++;
if (isInstructionTriviallyDead(Inst))
Inst->eraseFromParent();
else if (Constant *C = ConstantFoldInstruction(Inst)) {
else if (Constant *C = ConstantFoldInstruction(Inst, Context)) {
Inst->replaceAllUsesWith(C);
Inst->eraseFromParent();
}

View File

@ -338,7 +338,8 @@ ConstantFoldMappedInstruction(const Instruction *I) {
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(),
&Ops[0], Ops.size(), TD);
&Ops[0], Ops.size(),
Context, TD);
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
@ -346,10 +347,10 @@ ConstantFoldMappedInstruction(const Instruction *I) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
CE);
CE, Context);
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
Ops.size(), TD);
Ops.size(), Context, TD);
}
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,

View File

@ -1178,6 +1178,7 @@ static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
/// ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI) {
BasicBlock *BB = BI->getParent();
LLVMContext* Context = BB->getContext();
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
// NOTE: we currently cannot transform this case if the PHI node is used
// outside of the block.
@ -1243,7 +1244,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
}
// Check for trivial simplification.
if (Constant *C = ConstantFoldInstruction(N)) {
if (Constant *C = ConstantFoldInstruction(N, Context)) {
TranslateMap[BBI] = C;
delete N; // Constant folded away, don't need actual inst
} else {

View File

@ -349,7 +349,8 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM)
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
else if (Constant *C = ConstantFoldInstruction(Inst)) {
else if (Constant *C = ConstantFoldInstruction(Inst,
Header->getContext())) {
Inst->replaceAllUsesWith(C);
(*BB)->getInstList().erase(Inst);
}