[NFC][scudo] Extract MapAllocatorTest for TEST_F

This commit is contained in:
Vitaly Buka 2021-07-01 10:22:35 -07:00
parent f03d29601e
commit 39a15b5ae0
1 changed files with 77 additions and 71 deletions

View File

@ -11,11 +11,11 @@
#include "allocator_config.h"
#include "secondary.h"
#include <stdio.h>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <random>
#include <stdio.h>
#include <thread>
#include <vector>
@ -94,14 +94,22 @@ TEST(ScudoSecondaryTest, SecondaryBasic) {
using LargeAllocator = scudo::MapAllocator<scudo::DefaultConfig>;
struct MapAllocatorTest : public Test {
void SetUp() override { Allocator->init(nullptr); }
void TearDown() override { Allocator->unmapTestOnly(); }
std::unique_ptr<LargeAllocator> Allocator =
std::make_unique<LargeAllocator>();
scudo::Options Options = {};
};
// This exercises a variety of combinations of size and alignment for the
// MapAllocator. The size computation done here mimic the ones done by the
// combined allocator.
TEST(ScudoSecondaryTest, SecondaryCombinations) {
TEST_F(MapAllocatorTest, SecondaryCombinations) {
constexpr scudo::uptr MinAlign = FIRST_32_SECOND_64(8, 16);
constexpr scudo::uptr HeaderSize = scudo::roundUpTo(8, MinAlign);
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr);
for (scudo::uptr SizeLog = 0; SizeLog <= 20; SizeLog++) {
for (scudo::uptr AlignLog = FIRST_32_SECOND_64(3, 4); AlignLog <= 16;
AlignLog++) {
@ -113,103 +121,102 @@ TEST(ScudoSecondaryTest, SecondaryCombinations) {
scudo::roundUpTo((1U << SizeLog) + Delta, MinAlign);
const scudo::uptr Size =
HeaderSize + UserSize + (Align > MinAlign ? Align - HeaderSize : 0);
void *P = L->allocate(scudo::Options{}, Size, Align);
void *P = Allocator->allocate(Options, Size, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 0xff, UserSize);
L->deallocate(scudo::Options{}, P);
Allocator->deallocate(Options, P);
}
}
}
scudo::ScopedString Str;
L->getStats(&Str);
Allocator->getStats(&Str);
Str.output();
L->unmapTestOnly();
}
TEST(ScudoSecondaryTest, SecondaryIterate) {
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr);
TEST_F(MapAllocatorTest, SecondaryIterate) {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate(scudo::Options{}, (std::rand() % 16) * PageSize));
V.push_back(Allocator->allocate(Options, (std::rand() % 16) * PageSize));
auto Lambda = [V](scudo::uptr Block) {
EXPECT_NE(std::find(V.begin(), V.end(), reinterpret_cast<void *>(Block)),
V.end());
};
L->disable();
L->iterateOverBlocks(Lambda);
L->enable();
Allocator->disable();
Allocator->iterateOverBlocks(Lambda);
Allocator->enable();
while (!V.empty()) {
L->deallocate(scudo::Options{}, V.back());
Allocator->deallocate(Options, V.back());
V.pop_back();
}
scudo::ScopedString Str;
L->getStats(&Str);
Allocator->getStats(&Str);
Str.output();
L->unmapTestOnly();
}
TEST(ScudoSecondaryTest, SecondaryOptions) {
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr);
TEST_F(MapAllocatorTest, SecondaryOptions) {
// Attempt to set a maximum number of entries higher than the array size.
EXPECT_FALSE(L->setOption(scudo::Option::MaxCacheEntriesCount, 4096U));
EXPECT_FALSE(
Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 4096U));
// A negative number will be cast to a scudo::u32, and fail.
EXPECT_FALSE(L->setOption(scudo::Option::MaxCacheEntriesCount, -1));
if (L->canCache(0U)) {
EXPECT_FALSE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, -1));
if (Allocator->canCache(0U)) {
// Various valid combinations.
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(L->canCache(1UL << 18));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 17));
EXPECT_FALSE(L->canCache(1UL << 18));
EXPECT_TRUE(L->canCache(1UL << 16));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntriesCount, 0U));
EXPECT_FALSE(L->canCache(1UL << 16));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(L->canCache(1UL << 16));
}
L->unmapTestOnly();
}
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready;
static void performAllocations(LargeAllocator *L) {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 128U; I++) {
// Deallocate 75% of the blocks.
const bool Deallocate = (rand() & 3) != 0;
void *P = L->allocate(scudo::Options{}, (std::rand() % 16) * PageSize);
if (Deallocate)
L->deallocate(scudo::Options{}, P);
else
V.push_back(P);
}
while (!V.empty()) {
L->deallocate(scudo::Options{}, V.back());
V.pop_back();
EXPECT_TRUE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(
Allocator->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(Allocator->canCache(1UL << 18));
EXPECT_TRUE(
Allocator->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 17));
EXPECT_FALSE(Allocator->canCache(1UL << 18));
EXPECT_TRUE(Allocator->canCache(1UL << 16));
EXPECT_TRUE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 0U));
EXPECT_FALSE(Allocator->canCache(1UL << 16));
EXPECT_TRUE(Allocator->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(
Allocator->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(Allocator->canCache(1UL << 16));
}
}
TEST(ScudoSecondaryTest, SecondaryThreadsRace) {
Ready = false;
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr, /*ReleaseToOsInterval=*/0);
struct MapAllocatorWithReleaseTest : public MapAllocatorTest {
void SetUp() override { Allocator->init(nullptr, /*ReleaseToOsInterval=*/0); }
void performAllocations() {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 128U; I++) {
// Deallocate 75% of the blocks.
const bool Deallocate = (rand() & 3) != 0;
void *P = Allocator->allocate(Options, (std::rand() % 16) * PageSize);
if (Deallocate)
Allocator->deallocate(Options, P);
else
V.push_back(P);
}
while (!V.empty()) {
Allocator->deallocate(Options, V.back());
V.pop_back();
}
}
std::mutex Mutex;
std::condition_variable Cv;
bool Ready = false;
};
TEST_F(MapAllocatorWithReleaseTest, SecondaryThreadsRace) {
std::thread Threads[16];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread(performAllocations, L.get());
Threads[I] =
std::thread(&MapAllocatorWithReleaseTest::performAllocations, this);
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
@ -218,7 +225,6 @@ TEST(ScudoSecondaryTest, SecondaryThreadsRace) {
for (auto &T : Threads)
T.join();
scudo::ScopedString Str;
L->getStats(&Str);
Allocator->getStats(&Str);
Str.output();
L->unmapTestOnly();
}