[pstl] The optimized parallel versions of sort, stable_sort algorithms, TBB parallel backend.

Summary: 
A modification of the parallel sorting algorithm, additionally optimized for a partially sorted array.

Reviewers: rodgert
           ldionne

Differential Revision: https://reviews.llvm.org/D59925

llvm-svn: 362678
This commit is contained in:
Mikhail Dvorskiy 2019-06-06 07:34:46 +00:00
parent d940e20051
commit 36d1f2443b
3 changed files with 584 additions and 167 deletions

View File

@ -2087,8 +2087,7 @@ __pattern_sort(_ExecutionPolicy&& __exec, _RandomAccessIterator __first, _Random
__internal::__except_handler([&]() {
__par_backend::__parallel_stable_sort(std::forward<_ExecutionPolicy>(__exec), __first, __last, __comp,
[](_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp) { std::sort(__first, __last, __comp); },
__last - __first);
_Compare __comp) { std::sort(__first, __last, __comp); });
});
}
@ -2135,6 +2134,9 @@ __pattern_partial_sort(_ExecutionPolicy&& __exec, _RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp, _IsVector, /*is_parallel=*/std::true_type)
{
const auto __n = __middle - __first;
if(__n == 0)
return;
__internal::__except_handler([&]() {
__par_backend::__parallel_stable_sort(
std::forward<_ExecutionPolicy>(__exec), __first, __last, __comp,
@ -2665,21 +2667,17 @@ __pattern_inplace_merge(_ExecutionPolicy&& __exec, _BidirectionalIterator __firs
return __internal::__brick_uninitialized_move(__first1, __last1, __first2, _IsVector());
};
__par_backend::__parallel_merge(
std::forward<_ExecutionPolicy>(__exec), __first, __middle, __middle, __last, __r, __comp,
[__n, __move_values, __move_sequences](_BidirectionalIterator __f1, _BidirectionalIterator __l1,
_BidirectionalIterator __f2, _BidirectionalIterator __l2, _Tp* __f3,
_Compare __comp) {
auto __func = __par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>(
__n, __move_values, __move_sequences);
__func(__f1, __l1, __f2, __l2, __f3, __comp);
__par_backend::__parallel_merge(std::forward<_ExecutionPolicy>(__exec), __first, __middle, __middle, __last, __r,
__comp, [__n, __move_values, __move_sequences](_BidirectionalIterator __f1, _BidirectionalIterator __l1,
_BidirectionalIterator __f2, _BidirectionalIterator __l2, _Tp* __f3,_Compare __comp) {
(__par_backend::__serial_move_merge(__n))(__f1, __l1, __f2, __l2, __f3, __comp, __move_values, __move_values, __move_sequences,
__move_sequences);
return __f3 + (__l1 - __f1) + (__l2 - __f2);
});
__par_backend::__parallel_for(std::forward<_ExecutionPolicy>(__exec), __r, __r + __n,
[__r, __first, __is_vector](_Tp* __i, _Tp* __j) {
__internal::__brick_move(__i, __j, __first + (__i - __r), __is_vector);
});
__par_backend::__parallel_for(std::forward<_ExecutionPolicy>(__exec), __r, __r + __n,
[__r, __first, __is_vector](_Tp* __i, _Tp* __j) {
__internal::__brick_move(__i, __j, __first + (__i - __r), __is_vector);
});
});
}

View File

@ -408,75 +408,435 @@ __parallel_transform_scan(_ExecutionPolicy&&, _Index __n, _Up __u, _Tp __init, _
//
// These are used by parallel implementations but do not depend on them.
//------------------------------------------------------------------------
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3,
typename _Compare, typename _Cleanup, typename _LeafMerge>
class __merge_task : public tbb::task
{
/*override*/ tbb::task*
execute();
_RandomAccessIterator1 _M_xs, _M_xe;
_RandomAccessIterator2 _M_ys, _M_ye;
_RandomAccessIterator3 _M_zs;
_Compare _M_comp;
_Cleanup _M_cleanup;
_LeafMerge _M_leaf_merge;
public:
__merge_task(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys,
_RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp, _Cleanup __cleanup,
_LeafMerge __leaf_merge)
: _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_comp(__comp), _M_cleanup(__cleanup),
_M_leaf_merge(__leaf_merge)
{
}
};
#define _PSTL_MERGE_CUT_OFF 2000
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3,
typename __M_Compare, typename _Cleanup, typename _LeafMerge>
tbb::task*
__merge_task<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, __M_Compare, _Cleanup,
_LeafMerge>::execute()
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _Cleanup,
typename _LeafMerge>
class __merge_task : public tbb::task
{
typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1;
typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2;
typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType;
const _SizeType __n = (_M_xe - _M_xs) + (_M_ye - _M_ys);
const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF;
if (__n <= __merge_cut_off)
{
_M_leaf_merge(_M_xs, _M_xe, _M_ys, _M_ye, _M_zs, _M_comp);
typedef typename std::iterator_traits<_RandomAccessIterator1>::value_type _ValueType;
//we clean the buffer one time on last step of the sort
_M_cleanup(_M_xs, _M_xe);
_M_cleanup(_M_ys, _M_ye);
return nullptr;
}
else
/*override*/ tbb::task*
execute();
_RandomAccessIterator1 _M_x_beg;
_RandomAccessIterator2 _M_z_beg;
_SizeType _M_xs, _M_xe;
_SizeType _M_ys, _M_ye;
_SizeType _M_zs;
_Compare _M_comp;
_Cleanup _M_cleanup;
_LeafMerge _M_leaf_merge;
_SizeType _M_nsort; //number of elements to be sorted for partial_sort alforithm
static const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF;
bool _root; //means a task is merging root task
bool _x_orig; //"true" means X(or left ) subrange is in the original container; false - in the buffer
bool _y_orig; //"true" means Y(or right) subrange is in the original container; false - in the buffer
bool _x_first_move, _y_first_move; //"true" means X and Y subranges are merging into the buffer and move constructor
//should be called instead of just moving.
bool _split; //"true" means a merge task is a split task for parallel merging, the execution logic differs
bool
is_partial() const
{
_RandomAccessIterator1 __xm;
_RandomAccessIterator2 __ym;
if (_M_xe - _M_xs < _M_ye - _M_ys)
return _M_nsort > 0;
}
struct move_value
{
template <typename Iterator1, typename Iterator2>
void
operator()(Iterator1 __x, Iterator2 __z)
{
__ym = _M_ys + (_M_ye - _M_ys) / 2;
__xm = std::upper_bound(_M_xs, _M_xe, *__ym, _M_comp);
*__z = std::move(*__x);
}
};
struct move_value_construct
{
template <typename Iterator1, typename Iterator2>
void
operator()(Iterator1 __x, Iterator2 __z)
{
::new (std::addressof(*__z)) _ValueType(std::move(*__x));
}
};
struct move_range
{
template <typename Iterator1, typename Iterator2>
Iterator2
operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2)
{
if (__last1 - __first1 < __merge_cut_off)
return std::move(__first1, __last1, __first2);
auto __n = __last1 - __first1;
tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off),
[__first1, __first2](const tbb::blocked_range<_SizeType>& __range) {
std::move(__first1 + __range.begin(), __first1 + __range.end(),
__first2 + __range.begin());
});
return __first2 + __n;
}
};
struct move_range_construct
{
template <typename Iterator1, typename Iterator2>
Iterator2
operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2)
{
if (__last1 - __first1 < __merge_cut_off)
{
for (; __first1 != __last1; ++__first1, ++__first2)
move_value_construct()(__first1, __first2);
return __first2;
}
auto __n = __last1 - __first1;
tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off),
[__first1, __first2](const tbb::blocked_range<_SizeType>& __range) {
for (auto i = __range.begin(); i != __range.end(); ++i)
move_value_construct()(__first1 + i, __first2 + i);
});
return __first2 + __n;
}
};
public:
__merge_task(_SizeType __xs, _SizeType __xe, _SizeType __ys, _SizeType __ye, _SizeType __zs, _Compare __comp,
_Cleanup __cleanup, _LeafMerge __leaf_merge, _SizeType __nsort, _RandomAccessIterator1 __x_beg,
_RandomAccessIterator2 __z_beg, bool __x_orig, bool __y_orig, bool __root)
: _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_x_beg(__x_beg), _M_z_beg(__z_beg),
_M_comp(__comp), _M_cleanup(__cleanup), _M_leaf_merge(__leaf_merge), _M_nsort(__nsort), _root(__root),
_x_orig(__x_orig), _y_orig(__y_orig), _x_first_move(false), _y_first_move(false), _split(false)
{
}
bool
is_left(_SizeType __idx) const
{
return _M_xs == __idx;
}
template <typename IndexType>
void
set_first_move(IndexType __idx, bool __on_off)
{
if (is_left(__idx))
_x_first_move = __on_off;
else
_y_first_move = __on_off;
}
template <typename IndexType>
void
set_odd(IndexType __idx, bool __on_off)
{
if (is_left(__idx))
_x_orig = __on_off;
else
_y_orig = __on_off;
}
private:
__merge_task*
parent_merge() const
{
tbb::task* p = (_root ? nullptr : parent());
return static_cast<__merge_task*>(p);
}
bool
x_less_y()
{
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
assert(__nx > 0 && __ny > 0);
assert(_x_orig == _y_orig);
assert(!is_partial());
if (_x_orig)
{
assert(std::is_sorted(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_comp));
assert(std::is_sorted(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_comp));
return !_M_comp(*(_M_x_beg + _M_ys), *(_M_x_beg + _M_xe - 1));
}
assert(std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp));
assert(std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp));
return !_M_comp(*(_M_z_beg + _M_zs + __nx), *(_M_z_beg + _M_zs + __nx - 1));
}
void
move_x_range()
{
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
assert(__nx > 0 && __ny > 0);
if (_x_orig)
{
if (_x_first_move)
{
move_range_construct()(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_z_beg + _M_zs);
_x_first_move = false;
}
else
move_range()(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_z_beg + _M_zs);
}
else
{
__xm = _M_xs + (_M_xe - _M_xs) / 2;
__ym = std::lower_bound(_M_ys, _M_ye, *__xm, _M_comp);
assert(!_x_first_move);
move_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx, _M_x_beg + _M_xs);
}
const _RandomAccessIterator3 __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys));
tbb::task* __right = new (tbb::task::allocate_additional_child_of(*parent()))
__merge_task(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _M_cleanup, _M_leaf_merge);
_x_orig = !_x_orig;
}
void
move_y_range()
{
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
if (_y_orig)
{
if (_y_first_move)
{
move_range_construct()(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs + __nx);
_y_first_move = false;
}
else
move_range()(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs + __nx);
}
else
{
assert(!_y_first_move);
move_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny, _M_x_beg + _M_ys);
}
_y_orig = !_y_orig;
}
tbb::task*
merge_ranges()
{
assert(_x_orig == _y_orig); //two merged subrange must be lie into the same buffer
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
const auto __n = __nx + __ny;
// need to merge {x} and {y}
if (__n > __merge_cut_off)
return split_merging();
//merge to buffer
if (_x_orig)
{
assert(is_partial() || std::is_sorted(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_comp));
assert(is_partial() || std::is_sorted(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_comp));
if (_x_first_move && _y_first_move)
{
_M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs,
_M_comp, move_value_construct(), move_value_construct(), move_range_construct(),
move_range_construct());
_x_first_move = false, _y_first_move = false;
}
else if (_x_first_move && !_y_first_move)
{
_M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs,
_M_comp, move_value_construct(), move_value(), move_range_construct(), move_range());
_x_first_move = false;
}
else if (!_x_first_move && _y_first_move)
{
_M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs,
_M_comp, move_value(), move_value_construct(), move_range(), move_range_construct());
_y_first_move = false;
}
else
_M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs,
_M_comp, move_value(), move_value(), move_range(), move_range());
assert(is_partial() || std::is_sorted(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx + __ny, _M_comp));
assert(parent_merge()); //not root merging task
}
//merge to "origin"
else
{
assert(_x_orig == _y_orig);
assert(!_x_first_move);
assert(!_y_first_move);
assert(is_partial() || std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp));
assert(is_partial() || std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp));
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
_M_leaf_merge(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_x_beg + _M_zs,
_M_comp, move_value(), move_value(), move_range(), move_range());
assert(is_partial() || std::is_sorted(_M_x_beg + _M_zs, _M_x_beg + _M_zs + __nx + __ny, _M_comp));
//in case of the root merge task - clean the buffer
if (!parent_merge())
{
_M_cleanup(_M_z_beg + _M_xs, _M_z_beg + _M_xe);
_M_cleanup(_M_z_beg + _M_ys, _M_z_beg + _M_ye);
}
}
return nullptr;
}
tbb::task*
process_ranges()
{
assert(_x_orig == _y_orig);
assert(!_split);
auto p = parent_merge();
//optimization, just for sort algorithm, not for partial_sort
//{x} <= {y}
if (!is_partial() && x_less_y())
{
if (p)
{
const auto id_range = _M_zs;
p->set_odd(id_range, _x_orig);
p->set_first_move(id_range, _x_first_move);
}
else
{ //root task
//clean the buffer
if (!_x_first_move)
_M_cleanup(_M_z_beg + _M_xs, _M_z_beg + _M_xe);
if (!_y_first_move)
_M_cleanup(_M_z_beg + _M_ys, _M_z_beg + _M_ye);
}
return nullptr;
}
//in case of the root merge task - move to the buffer firstly
//the root merging task
if (!p && _x_orig)
{
assert(_y_orig);
move_x_range();
move_y_range();
}
//we have to revert "_x(y)_orig" flag of the parent merging task
if (p)
{
const auto id_range = _M_zs;
p->set_odd(id_range, !_x_orig);
}
const _SizeType __n = (_M_xe - _M_xs) + (_M_ye - _M_ys);
// need to merge {x} and {y}
return merge_ranges();
}
//splitting as merge task into 2 of the same level
tbb::task*
split_merging()
{
assert(_x_orig == _y_orig);
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
_SizeType __xm{};
_SizeType __ym{};
if (__nx < __ny)
{
__ym = _M_ys + __ny / 2;
if (_x_orig)
__xm = std::upper_bound(_M_x_beg + _M_xs, _M_x_beg + _M_xe, *(_M_x_beg + __ym), _M_comp) - _M_x_beg;
else
__xm = std::upper_bound(_M_z_beg + _M_xs, _M_z_beg + _M_xe, *(_M_z_beg + __ym), _M_comp) - _M_z_beg;
}
else
{
__xm = _M_xs + __nx / 2;
if (_y_orig)
__ym = std::lower_bound(_M_x_beg + _M_ys, _M_x_beg + _M_ye, *(_M_x_beg + __xm), _M_comp) - _M_x_beg;
else
__ym = std::lower_bound(_M_z_beg + _M_ys, _M_z_beg + _M_ye, *(_M_z_beg + __xm), _M_comp) - _M_z_beg;
}
auto __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys));
__merge_task* __right = new (tbb::task::allocate_additional_child_of(*parent()))
__merge_task(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _M_cleanup, _M_leaf_merge, _M_nsort, _M_x_beg, _M_z_beg,
_x_orig, _y_orig, _root);
__right->_x_first_move = _x_first_move;
__right->_y_first_move = _y_first_move;
__right->_split = true;
tbb::task::spawn(*__right);
tbb::task::recycle_as_continuation();
_M_xe = __xm;
_M_ye = __ym;
_split = true;
return this;
}
return this;
};
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename __M_Compare, typename _Cleanup,
typename _LeafMerge>
tbb::task*
__merge_task<_RandomAccessIterator1, _RandomAccessIterator2, __M_Compare, _Cleanup, _LeafMerge>::execute()
{
//a. split merge task into 2 of the same level; the special logic,
//without processing(process_ranges) adjacent sub-ranges x and y
if (_split)
return merge_ranges();
//b. General merging of adjacent sub-ranges x and y (with optimization in case of {x} <= {y} )
//1. x and y are in the even buffer
//2. x and y are in the odd buffer
if (_x_orig == _y_orig)
return process_ranges();
//3. x is in even buffer, y is in the odd buffer
//4. x is in odd buffer, y is in the even buffer
if (!parent_merge())
{ //root merge task
if (_x_orig)
move_x_range();
else
move_y_range();
}
else
{
const _SizeType __nx = (_M_xe - _M_xs);
const _SizeType __ny = (_M_ye - _M_ys);
assert(__nx > 0);
assert(__nx > 0);
if (__nx < __ny)
move_x_range();
else
move_y_range();
}
return process_ranges();
}
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _LeafSort>
@ -490,27 +850,19 @@ class __stable_sort_task : public tbb::task
private:
/*override*/ tbb::task*
execute();
_RandomAccessIterator1 _M_xs, _M_xe;
_RandomAccessIterator2 _M_zs;
_RandomAccessIterator1 _M_xs, _M_xe, _M_x_beg;
_RandomAccessIterator2 _M_zs, _M_z_beg;
_Compare _M_comp;
_LeafSort _M_leaf_sort;
int32_t _M_inplace;
_SizeType _M_nsort;
bool _M_root;
_SizeType _M_nsort; //zero or number of elements to be sorted for partial_sort alforithm
public:
__stable_sort_task(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __zs,
int32_t __inplace, _Compare __comp, _LeafSort __leaf_sort, _SizeType __n)
: _M_xs(__xs), _M_xe(__xe), _M_zs(__zs), _M_comp(__comp), _M_leaf_sort(__leaf_sort), _M_inplace(__inplace),
_M_nsort(__n)
{
}
};
//! Binary operator that does nothing
struct __binary_no_op
{
template <typename _T>
void operator()(_T, _T)
__stable_sort_task(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __zs, bool __root,
_Compare __comp, _LeafSort __leaf_sort, _SizeType __nsort, _RandomAccessIterator1 __x_beg,
_RandomAccessIterator2 __z_beg)
: _M_xs(__xs), _M_xe(__xe), _M_x_beg(__x_beg), _M_zs(__zs), _M_z_beg(__z_beg), _M_root(__root), _M_comp(__comp),
_M_leaf_sort(__leaf_sort), _M_nsort(__nsort)
{
}
};
@ -521,64 +873,43 @@ template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, type
tbb::task*
__stable_sort_task<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, _LeafSort>::execute()
{
typedef __merge_task<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, __serial_destroy, __serial_move_merge>
_MergeTaskType;
const _SizeType __n = _M_xe - _M_xs;
const _SizeType __nmerge = _M_nsort > 0 ? _M_nsort : __n;
const _SizeType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF;
if (__n <= __sort_cut_off)
{
_M_leaf_sort(_M_xs, _M_xe, _M_comp);
if (_M_inplace != 2)
__par_backend::__init_buf(_M_xs, _M_xe, _M_zs, _M_inplace == 0);
return NULL;
}
else
{
const _RandomAccessIterator1 __xm = _M_xs + __n / 2;
const _RandomAccessIterator2 __zm = _M_zs + (__xm - _M_xs);
const _RandomAccessIterator2 __ze = _M_zs + __n;
task* __m;
auto __move_values = [](_RandomAccessIterator2 __x, _RandomAccessIterator1 __z) { *__z = std::move(*__x); };
auto __move_sequences = [](_RandomAccessIterator2 __first1, _RandomAccessIterator2 __last1,
_RandomAccessIterator1 __first2) { return std::move(__first1, __last1, __first2); };
if (_M_inplace == 2)
__m = new (tbb::task::allocate_continuation())
__merge_task<_RandomAccessIterator2, _RandomAccessIterator2, _RandomAccessIterator1, _Compare,
__serial_destroy,
__par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>>(
_M_zs, __zm, __zm, __ze, _M_xs, _M_comp, __serial_destroy(),
__par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>(
__nmerge, __move_values, __move_sequences));
else if (_M_inplace)
__m = new (tbb::task::allocate_continuation())
__merge_task<_RandomAccessIterator2, _RandomAccessIterator2, _RandomAccessIterator1, _Compare,
__par_backend::__binary_no_op,
__par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>>(
_M_zs, __zm, __zm, __ze, _M_xs, _M_comp, __par_backend::__binary_no_op(),
__par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>(
__nmerge, __move_values, __move_sequences));
else
{
auto __move_values = [](_RandomAccessIterator1 __x, _RandomAccessIterator2 __z) { *__z = std::move(*__x); };
auto __move_sequences = [](_RandomAccessIterator1 __first1, _RandomAccessIterator1 __last1,
_RandomAccessIterator2 __first2) {
return std::move(__first1, __last1, __first2);
};
__m = new (tbb::task::allocate_continuation())
__merge_task<_RandomAccessIterator1, _RandomAccessIterator1, _RandomAccessIterator2, _Compare,
__par_backend::__binary_no_op,
__par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>>(
_M_xs, __xm, __xm, _M_xe, _M_zs, _M_comp, __par_backend::__binary_no_op(),
__par_backend::__serial_move_merge<decltype(__move_values), decltype(__move_sequences)>(
__nmerge, __move_values, __move_sequences));
}
__m->set_ref_count(2);
task* __right = new (__m->allocate_child())
__stable_sort_task(__xm, _M_xe, __zm, !_M_inplace, _M_comp, _M_leaf_sort, __nmerge);
tbb::task::spawn(*__right);
tbb::task::recycle_as_child_of(*__m);
_M_xe = __xm;
_M_inplace = !_M_inplace;
assert(!_M_root);
tbb::task* p = parent();
const auto id_range = _M_xs - _M_x_beg;
static_cast<_MergeTaskType*>(p)->set_first_move(id_range, true);
return nullptr;
}
const _RandomAccessIterator1 __xm = _M_xs + __n / 2;
const _RandomAccessIterator2 __zm = _M_zs + (__xm - _M_xs);
const _RandomAccessIterator2 __ze = _M_zs + __n;
_MergeTaskType* __m = new (allocate_continuation())
_MergeTaskType(_M_xs - _M_x_beg, __xm - _M_x_beg, __xm - _M_x_beg, _M_xe - _M_x_beg, _M_zs - _M_z_beg,
_M_comp, __serial_destroy(), __serial_move_merge(__nmerge), _M_nsort, _M_x_beg, _M_z_beg,
/*x_orig*/ true, /*y_orig*/ true, /*root*/ _M_root);
_M_root = false;
__m->set_ref_count(2);
auto __right = new (__m->allocate_child())
__stable_sort_task(__xm, _M_xe, __zm, _M_root, _M_comp, _M_leaf_sort, _M_nsort, _M_x_beg, _M_z_beg);
spawn(*__right);
recycle_as_child_of(*__m);
_M_xe = __xm;
return this;
}
@ -592,18 +923,18 @@ __parallel_stable_sort(_ExecutionPolicy&&, _RandomAccessIterator __xs, _RandomAc
typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _ValueType;
typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _DifferenceType;
const _DifferenceType __n = __xe - __xs;
if (__nsort == 0)
__nsort = __n;
if (__nsort == __n)
__nsort = 0; // 'partial_sort' becames 'sort'
const _DifferenceType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF;
if (__n > __sort_cut_off)
{
assert(__nsort > 0 && __nsort <= __n);
__buffer<_ValueType> __buf(__n);
using tbb::task;
task::spawn_root_and_wait(*new (task::allocate_root())
__stable_sort_task<_RandomAccessIterator, _ValueType*, _Compare, _LeafSort>(
__xs, __xe, (_ValueType*)__buf.get(), 2, __comp, __leaf_sort, __nsort));
tbb::task* root = new (tbb::task::allocate_root())
__stable_sort_task<_RandomAccessIterator, _ValueType*, _Compare, _LeafSort>(
__xs, __xe, __buf.get(), true, __comp, __leaf_sort, __nsort, __xs, __buf.get());
tbb::task::spawn_root_and_wait(*root);
return;
}
//serial sort
@ -614,6 +945,67 @@ __parallel_stable_sort(_ExecutionPolicy&&, _RandomAccessIterator __xs, _RandomAc
//------------------------------------------------------------------------
// parallel_merge
//------------------------------------------------------------------------
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3,
typename _Compare, typename _LeafMerge>
class __merge_task_static : public tbb::task
{
/*override*/ tbb::task*
execute();
_RandomAccessIterator1 _M_xs, _M_xe;
_RandomAccessIterator2 _M_ys, _M_ye;
_RandomAccessIterator3 _M_zs;
_Compare _M_comp;
_LeafMerge _M_leaf_merge;
public:
__merge_task_static(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys,
_RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp,
_LeafMerge __leaf_merge)
: _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_comp(__comp), _M_leaf_merge(__leaf_merge)
{
}
};
//TODO: consider usage of parallel_for with a custom blocked_range
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3,
typename __M_Compare, typename _LeafMerge>
tbb::task*
__merge_task_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, __M_Compare,
_LeafMerge>::execute()
{
typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1;
typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2;
typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType;
const _SizeType __n = (_M_xe - _M_xs) + (_M_ye - _M_ys);
const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF;
if (__n <= __merge_cut_off)
{
_M_leaf_merge(_M_xs, _M_xe, _M_ys, _M_ye, _M_zs, _M_comp);
return nullptr;
}
_RandomAccessIterator1 __xm;
_RandomAccessIterator2 __ym;
if (_M_xe - _M_xs < _M_ye - _M_ys)
{
__ym = _M_ys + (_M_ye - _M_ys) / 2;
__xm = std::upper_bound(_M_xs, _M_xe, *__ym, _M_comp);
}
else
{
__xm = _M_xs + (_M_xe - _M_xs) / 2;
__ym = std::lower_bound(_M_ys, _M_ye, *__xm, _M_comp);
}
const _RandomAccessIterator3 __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys));
tbb::task* __right = new (tbb::task::allocate_additional_child_of(*parent()))
__merge_task_static(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _M_leaf_merge);
tbb::task::spawn(*__right);
tbb::task::recycle_as_continuation();
_M_xe = __xm;
_M_ye = __ym;
return this;
}
template <class _ExecutionPolicy, typename _RandomAccessIterator1, typename _RandomAccessIterator2,
typename _RandomAccessIterator3, typename _Compare, typename _LeafMerge>
@ -635,11 +1027,11 @@ __parallel_merge(_ExecutionPolicy&&, _RandomAccessIterator1 __xs, _RandomAccessI
else
{
tbb::this_task_arena::isolate([=]() {
typedef __merge_task<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, _Compare,
__par_backend::__binary_no_op, _LeafMerge>
typedef __merge_task_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, _Compare,
_LeafMerge>
_TaskType;
tbb::task::spawn_root_and_wait(*new (tbb::task::allocate_root()) _TaskType(
__xs, __xe, __ys, __ye, __zs, __comp, __par_backend::__binary_no_op(), __leaf_merge));
tbb::task::spawn_root_and_wait(*new (tbb::task::allocate_root())
_TaskType(__xs, __xe, __ys, __ye, __zs, __comp, __leaf_merge));
});
}
}

View File

@ -37,24 +37,28 @@ struct __serial_destroy
};
//! Merge sequences [__xs,__xe) and [__ys,__ye) to output sequence [__zs,(__xe-__xs)+(__ye-__ys)), using std::move
template <class _MoveValues, class _MoveSequences>
struct __serial_move_merge
{
const std::size_t _M_nmerge;
_MoveValues _M_move_values;
_MoveSequences _M_move_sequences;
explicit __serial_move_merge(std::size_t __nmerge, _MoveValues __move_values, _MoveSequences __move_sequences)
: _M_nmerge(__nmerge), _M_move_values(__move_values), _M_move_sequences(__move_sequences)
{
}
template <class _RandomAccessIterator1, class _RandomAccessIterator2, class _RandomAccessIterator3, class _Compare>
explicit __serial_move_merge(std::size_t __nmerge) : _M_nmerge(__nmerge) {}
template <class _RandomAccessIterator1, class _RandomAccessIterator2, class _RandomAccessIterator3, class _Compare,
class _MoveValueX, class _MoveValueY, class _MoveSequenceX, class _MoveSequenceY>
void
operator()(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys,
_RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp)
_RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp, _MoveValueX __move_value_x,
_MoveValueY __move_value_y, _MoveSequenceX __move_sequence_x, _MoveSequenceY __move_sequence_y)
{
constexpr bool __same_move_val = std::is_same<_MoveValueX, _MoveValueY>::value;
constexpr bool __same_move_seq = std::is_same<_MoveSequenceX, _MoveSequenceY>::value;
auto __n = _M_nmerge;
assert(__n > 0);
auto __nx = __xe - __xs;
//auto __ny = __ye - __ys;
_RandomAccessIterator3 __zs_beg = __zs;
if (__xs != __xe)
{
if (__ys != __ye)
@ -63,7 +67,11 @@ struct __serial_move_merge
{
if (__comp(*__ys, *__xs))
{
_M_move_values(__ys, __zs);
const auto __i = __zs - __zs_beg;
if (__i < __nx)
__move_value_x(__ys, __zs);
else
__move_value_y(__ys, __zs);
++__zs, --__n;
if (++__ys == __ye)
{
@ -71,38 +79,57 @@ struct __serial_move_merge
}
else if (__n == 0)
{
__zs = _M_move_sequences(__ys, __ye, __zs);
const auto __i = __zs - __zs_beg;
if (__same_move_seq || __i < __nx)
__zs = __move_sequence_x(__ys, __ye, __zs);
else
__zs = __move_sequence_y(__ys, __ye, __zs);
break;
}
else
{
}
}
else
{
_M_move_values(__xs, __zs);
const auto __i = __zs - __zs_beg;
if (__same_move_val || __i < __nx)
__move_value_x(__xs, __zs);
else
__move_value_y(__xs, __zs);
++__zs, --__n;
if (++__xs == __xe)
{
_M_move_sequences(__ys, __ye, __zs);
const auto __i = __zs - __zs_beg;
if (__same_move_seq || __i < __nx)
__move_sequence_x(__ys, __ye, __zs);
else
__move_sequence_y(__ys, __ye, __zs);
return;
}
else if (__n == 0)
{
__zs = _M_move_sequences(__xs, __xe, __zs);
_M_move_sequences(__ys, __ye, __zs);
const auto i = __zs - __zs_beg;
if (__same_move_seq || __i < __nx)
{
__zs = __move_sequence_x(__xs, __xe, __zs);
__move_sequence_x(__ys, __ye, __zs);
}
else
{
__zs = __move_sequence_y(__xs, __xe, __zs);
__move_sequence_y(__ys, __ye, __zs);
}
return;
}
else
{
}
}
}
}
__ys = __xs;
__ye = __xe;
}
_M_move_sequences(__ys, __ye, __zs);
const auto __i = __zs - __zs_beg;
if (__same_move_seq || __i < __nx)
__move_sequence_x(__ys, __ye, __zs);
else
__move_sequence_y(__ys, __ye, __zs);
}
};