GlobalISel: support same ConstantExprs as Instructions.

It's more than just inttoptr, but the others can't be tested until we have
support for non-trivial constants (they currently get unavoidably folded to a
ConstantInt).

llvm-svn: 278303
This commit is contained in:
Tim Northover 2016-08-10 23:02:41 +00:00
parent 1ae68cdee7
commit 357f1be2ca
3 changed files with 143 additions and 88 deletions

View File

@ -109,47 +109,128 @@ private:
/// Translate an LLVM bitcast into generic IR. Either a COPY or a G_BITCAST is
/// emitted.
bool translateBitCast(const CastInst &CI);
bool translateBitCast(const User &U);
/// Translate an LLVM load instruction into generic IR.
bool translateLoad(const LoadInst &LI);
bool translateLoad(const User &U);
/// Translate an LLVM store instruction into generic IR.
bool translateStore(const StoreInst &SI);
bool translateStore(const User &U);
/// Translate call instruction.
/// \pre \p Inst is a call instruction.
bool translateCall(const CallInst &Inst);
/// \pre \p U is a call instruction.
bool translateCall(const User &U);
/// Translate one of LLVM's cast instructions into MachineInstrs, with the
/// given generic Opcode.
bool translateCast(unsigned Opcode, const CastInst &CI);
bool translateCast(unsigned Opcode, const User &U);
/// Translate static alloca instruction (i.e. one of constant size and in the
/// first basic block).
bool translateStaticAlloca(const AllocaInst &Inst);
/// Translate a phi instruction.
bool translatePhi(const PHINode &PI);
bool translatePHI(const User &U);
/// Add remaining operands onto phis we've translated. Executed after all
/// MachineBasicBlocks for the function have been created.
void finishPendingPhis();
/// Translate \p Inst into a binary operation \p Opcode.
/// \pre \p Inst is a binary operation.
bool translateBinaryOp(unsigned Opcode, const BinaryOperator &Inst);
/// \pre \p U is a binary operation.
bool translateBinaryOp(unsigned Opcode, const User &U);
/// Translate branch (br) instruction.
/// \pre \p Inst is a branch instruction.
bool translateBr(const BranchInst &Inst);
/// \pre \p U is a branch instruction.
bool translateBr(const User &U);
bool translateAdd(const User &U) {
return translateBinaryOp(TargetOpcode::G_ADD, U);
}
bool translateSub(const User &U) {
return translateBinaryOp(TargetOpcode::G_SUB, U);
}
bool translateAnd(const User &U) {
return translateBinaryOp(TargetOpcode::G_AND, U);
}
bool translateMul(const User &U) {
return translateBinaryOp(TargetOpcode::G_MUL, U);
}
bool translateOr(const User &U) {
return translateBinaryOp(TargetOpcode::G_OR, U);
}
bool translateXor(const User &U) {
return translateBinaryOp(TargetOpcode::G_XOR, U);
}
bool translateAlloca(const User &U) {
return translateStaticAlloca(cast<AllocaInst>(U));
}
bool translateIntToPtr(const User &U) {
return translateCast(TargetOpcode::G_INTTOPTR, U);
}
bool translatePtrToInt(const User &U) {
return translateCast(TargetOpcode::G_PTRTOINT, U);
}
bool translateTrunc(const User &U) {
return translateCast(TargetOpcode::G_TRUNC, U);
}
bool translateUnreachable(const User &U) { return true; }
/// Translate return (ret) instruction.
/// The target needs to implement CallLowering::lowerReturn for
/// this to succeed.
/// \pre \p Inst is a return instruction.
bool translateReturn(const ReturnInst &Inst);
/// \pre \p U is a return instruction.
bool translateRet(const User &U);
// Stubs to keep the compiler happy while we implement the rest of the
// translation.
bool translateSwitch(const User &U) { return false; }
bool translateIndirectBr(const User &U) { return false; }
bool translateInvoke(const User &U) { return false; }
bool translateResume(const User &U) { return false; }
bool translateCleanupRet(const User &U) { return false; }
bool translateCatchRet(const User &U) { return false; }
bool translateCatchSwitch(const User &U) { return false; }
bool translateFAdd(const User &U) { return false; }
bool translateFSub(const User &U) { return false; }
bool translateFMul(const User &U) { return false; }
bool translateUDiv(const User &U) { return false; }
bool translateSDiv(const User &U) { return false; }
bool translateFDiv(const User &U) { return false; }
bool translateURem(const User &U) { return false; }
bool translateSRem(const User &U) { return false; }
bool translateFRem(const User &U) { return false; }
bool translateShl(const User &U) { return false; }
bool translateLShr(const User &U) { return false; }
bool translateAShr(const User &U) { return false; }
bool translateGetElementPtr(const User &U) { return false; }
bool translateFence(const User &U) { return false; }
bool translateAtomicCmpXchg(const User &U) { return false; }
bool translateAtomicRMW(const User &U) { return false; }
bool translateSExt(const User &U) { return false; }
bool translateZExt(const User &U) { return false; }
bool translateFPToUI(const User &U) { return false; }
bool translateFPToSI(const User &U) { return false; }
bool translateUIToFP(const User &U) { return false; }
bool translateSIToFP(const User &U) { return false; }
bool translateFPTrunc(const User &U) { return false; }
bool translateFPExt(const User &U) { return false; }
bool translateAddrSpaceCast(const User &U) { return false; }
bool translateCleanupPad(const User &U) { return false; }
bool translateCatchPad(const User &U) { return false; }
bool translateICmp(const User &U) { return false; }
bool translateFCmp(const User &U) { return false; }
bool translateSelect(const User &U) { return false; }
bool translateUserOp1(const User &U) { return false; }
bool translateUserOp2(const User &U) { return false; }
bool translateVAArg(const User &U) { return false; }
bool translateExtractElement(const User &U) { return false; }
bool translateInsertElement(const User &U) { return false; }
bool translateShuffleVector(const User &U) { return false; }
bool translateExtractValue(const User &U) { return false; }
bool translateInsertValue(const User &U) { return false; }
bool translateLandingPad(const User &U) { return false; }
/// @}
// Builder for machine instruction a la IRBuilder.

View File

@ -84,25 +84,25 @@ MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) {
return *MBB;
}
bool IRTranslator::translateBinaryOp(unsigned Opcode,
const BinaryOperator &Inst) {
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U) {
// FIXME: handle signed/unsigned wrapping flags.
// Get or create a virtual register for each value.
// Unless the value is a Constant => loadimm cst?
// or inline constant each time?
// Creation of a virtual register needs to have a size.
unsigned Op0 = getOrCreateVReg(*Inst.getOperand(0));
unsigned Op1 = getOrCreateVReg(*Inst.getOperand(1));
unsigned Res = getOrCreateVReg(Inst);
MIRBuilder.buildInstr(Opcode, LLT{*Inst.getType()})
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
unsigned Res = getOrCreateVReg(U);
MIRBuilder.buildInstr(Opcode, LLT{*U.getType()})
.addDef(Res)
.addUse(Op0)
.addUse(Op1);
return true;
}
bool IRTranslator::translateReturn(const ReturnInst &RI) {
bool IRTranslator::translateRet(const User &U) {
const ReturnInst &RI = cast<ReturnInst>(U);
const Value *Ret = RI.getReturnValue();
// The target may mess up with the insertion point, but
// this is not important as a return is the last instruction
@ -110,7 +110,8 @@ bool IRTranslator::translateReturn(const ReturnInst &RI) {
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}
bool IRTranslator::translateBr(const BranchInst &BrInst) {
bool IRTranslator::translateBr(const User &U) {
const BranchInst &BrInst = cast<BranchInst>(U);
unsigned Succ = 0;
if (!BrInst.isUnconditional()) {
// We want a G_BRCOND to the true BB followed by an unconditional branch.
@ -131,7 +132,8 @@ bool IRTranslator::translateBr(const BranchInst &BrInst) {
return true;
}
bool IRTranslator::translateLoad(const LoadInst &LI) {
bool IRTranslator::translateLoad(const User &U) {
const LoadInst &LI = cast<LoadInst>(U);
assert(LI.isSimple() && "only simple loads are supported at the moment");
MachineFunction &MF = MIRBuilder.getMF();
@ -147,7 +149,8 @@ bool IRTranslator::translateLoad(const LoadInst &LI) {
return true;
}
bool IRTranslator::translateStore(const StoreInst &SI) {
bool IRTranslator::translateStore(const User &U) {
const StoreInst &SI = cast<StoreInst>(U);
assert(SI.isSimple() && "only simple loads are supported at the moment");
MachineFunction &MF = MIRBuilder.getMF();
@ -164,28 +167,30 @@ bool IRTranslator::translateStore(const StoreInst &SI) {
return true;
}
bool IRTranslator::translateBitCast(const CastInst &CI) {
if (LLT{*CI.getDestTy()} == LLT{*CI.getSrcTy()}) {
unsigned &Reg = ValToVReg[&CI];
bool IRTranslator::translateBitCast(const User &U) {
if (LLT{*U.getOperand(0)->getType()} == LLT{*U.getType()}) {
unsigned &Reg = ValToVReg[&U];
if (Reg)
MIRBuilder.buildCopy(Reg, getOrCreateVReg(*CI.getOperand(0)));
MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0)));
else
Reg = getOrCreateVReg(*CI.getOperand(0));
Reg = getOrCreateVReg(*U.getOperand(0));
return true;
}
return translateCast(TargetOpcode::G_BITCAST, CI);
return translateCast(TargetOpcode::G_BITCAST, U);
}
bool IRTranslator::translateCast(unsigned Opcode, const CastInst &CI) {
unsigned Op = getOrCreateVReg(*CI.getOperand(0));
unsigned Res = getOrCreateVReg(CI);
MIRBuilder.buildInstr(Opcode, {LLT{*CI.getDestTy()}, LLT{*CI.getSrcTy()}})
bool IRTranslator::translateCast(unsigned Opcode, const User &U) {
unsigned Op = getOrCreateVReg(*U.getOperand(0));
unsigned Res = getOrCreateVReg(U);
MIRBuilder
.buildInstr(Opcode, {LLT{*U.getType()}, LLT{*U.getOperand(0)->getType()}})
.addDef(Res)
.addUse(Op);
return true;
}
bool IRTranslator::translateCall(const CallInst &CI) {
bool IRTranslator::translateCall(const User &U) {
const CallInst &CI = cast<CallInst>(U);
auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo();
const Function *F = CI.getCalledFunction();
@ -246,7 +251,8 @@ bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) {
return true;
}
bool IRTranslator::translatePhi(const PHINode &PI) {
bool IRTranslator::translatePHI(const User &U) {
const PHINode &PI = cast<PHINode>(U);
MachineInstrBuilder MIB = MIRBuilder.buildInstr(TargetOpcode::PHI);
MIB.addDef(getOrCreateVReg(PI));
@ -277,59 +283,11 @@ void IRTranslator::finishPendingPhis() {
bool IRTranslator::translate(const Instruction &Inst) {
MIRBuilder.setDebugLoc(Inst.getDebugLoc());
switch(Inst.getOpcode()) {
// Arithmetic operations.
case Instruction::Add:
return translateBinaryOp(TargetOpcode::G_ADD, cast<BinaryOperator>(Inst));
case Instruction::Sub:
return translateBinaryOp(TargetOpcode::G_SUB, cast<BinaryOperator>(Inst));
// Bitwise operations.
case Instruction::And:
return translateBinaryOp(TargetOpcode::G_AND, cast<BinaryOperator>(Inst));
case Instruction::Mul:
return translateBinaryOp(TargetOpcode::G_MUL, cast<BinaryOperator>(Inst));
case Instruction::Or:
return translateBinaryOp(TargetOpcode::G_OR, cast<BinaryOperator>(Inst));
case Instruction::Xor:
return translateBinaryOp(TargetOpcode::G_XOR, cast<BinaryOperator>(Inst));
// Branch operations.
case Instruction::Br:
return translateBr(cast<BranchInst>(Inst));
case Instruction::Ret:
return translateReturn(cast<ReturnInst>(Inst));
// Calls
case Instruction::Call:
return translateCall(cast<CallInst>(Inst));
// Casts and allied operations
case Instruction::BitCast:
return translateBitCast(cast<CastInst>(Inst));
case Instruction::IntToPtr:
return translateCast(TargetOpcode::G_INTTOPTR, cast<CastInst>(Inst));
case Instruction::PtrToInt:
return translateCast(TargetOpcode::G_PTRTOINT, cast<CastInst>(Inst));
case Instruction::Trunc:
return translateCast(TargetOpcode::G_TRUNC, cast<CastInst>(Inst));
// Memory ops.
case Instruction::Load:
return translateLoad(cast<LoadInst>(Inst));
case Instruction::Store:
return translateStore(cast<StoreInst>(Inst));
case Instruction::Alloca:
return translateStaticAlloca(cast<AllocaInst>(Inst));
case Instruction::PHI:
return translatePhi(cast<PHINode>(Inst));
case Instruction::Unreachable:
return true;
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: return translate##OPCODE(Inst);
#include "llvm/IR/Instruction.def"
default:
llvm_unreachable("Opcode not supported");
llvm_unreachable("unknown opcode");
}
}
@ -338,7 +296,15 @@ bool IRTranslator::translate(const Constant &C, unsigned Reg) {
EntryBuilder.buildConstant(LLT{*CI->getType()}, Reg, CI->getZExtValue());
else if (isa<UndefValue>(C))
EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg);
else
else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE: return translate##OPCODE(*CE);
#include "llvm/IR/Instruction.def"
default:
llvm_unreachable("unknown opcode");
}
} else
llvm_unreachable("unhandled constant kind");
return true;

View File

@ -389,3 +389,11 @@ define i32 @constant_int_start() {
define i32 @test_undef() {
ret i32 undef
}
; CHECK-LABEL: name: test_constant_inttoptr
; CHECK: [[ONE:%[0-9]+]](64) = G_CONSTANT s64 1
; CHECK: [[PTR:%[0-9]+]](64) = G_INTTOPTR { p0, s64 } [[ONE]]
; CHECK: %x0 = COPY [[PTR]]
define i8* @test_constant_inttoptr() {
ret i8* inttoptr(i64 1 to i8*)
}