add the pattern operator to match to X86TypeInfo, use this to

convert AND64ri32 to use BinOpRI.

llvm-svn: 115878
This commit is contained in:
Chris Lattner 2010-10-07 00:01:39 +00:00
parent bf7cffc730
commit 356f16c142
1 changed files with 11 additions and 11 deletions

View File

@ -502,6 +502,7 @@ let CodeSize = 2 in {
class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
PatFrag loadnode, X86MemOperand memoperand, PatFrag loadnode, X86MemOperand memoperand,
ImmType immkind, Operand immoperand, ImmType immkind, Operand immoperand,
SDPatternOperator immoperator,
bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> { bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
/// VT - This is the value type itself. /// VT - This is the value type itself.
ValueType VT = vt; ValueType VT = vt;
@ -534,6 +535,10 @@ class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
/// extended value. /// extended value.
Operand ImmOperand = immoperand; Operand ImmOperand = immoperand;
/// ImmOperator - This is the operator that should be used to match an
/// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
SDPatternOperator ImmOperator = immoperator;
/// HasOddOpcode - This bit is true if the instruction should have an odd (as /// HasOddOpcode - This bit is true if the instruction should have an odd (as
/// opposed to even) opcode. Operations on i8 are usually even, operations on /// opposed to even) opcode. Operations on i8 are usually even, operations on
/// other datatypes are odd. /// other datatypes are odd.
@ -549,13 +554,13 @@ class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
} }
def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , Imm8 , i8imm , def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , Imm8 , i8imm ,
0, 0, 0>; imm, 0, 0, 0>;
def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, Imm16, i16imm, def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, Imm16, i16imm,
1, 1, 0>; imm, 1, 1, 0>;
def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, Imm32, i32imm, def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, Imm32, i32imm,
1, 0, 0>; imm, 1, 0, 0>;
def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, Imm32, i64i32imm, def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, Imm32, i64i32imm,
1, 0, 1>; i64immSExt32, 1, 0, 1>;
/// ITy - This instruction base class takes the type info for the instruction. /// ITy - This instruction base class takes the type info for the instruction.
/// Using this, it: /// Using this, it:
@ -612,7 +617,7 @@ class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
(ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", mnemonic, "{$src2, $dst|$dst, $src2}",
[(set typeinfo.RegClass:$dst, EFLAGS, [(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, imm:$src2))]> { (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]> {
let ImmT = typeinfo.ImmEncoding; let ImmT = typeinfo.ImmEncoding;
} }
@ -646,12 +651,7 @@ def AND64rm : BinOpRM<0x22, "and", Xi64, X86and_flag>;
def AND8ri : BinOpRI<0x80, "and", Xi8 , X86and_flag, MRM4r>; def AND8ri : BinOpRI<0x80, "and", Xi8 , X86and_flag, MRM4r>;
def AND16ri : BinOpRI<0x80, "and", Xi16, X86and_flag, MRM4r>; def AND16ri : BinOpRI<0x80, "and", Xi16, X86and_flag, MRM4r>;
def AND32ri : BinOpRI<0x80, "and", Xi32, X86and_flag, MRM4r>; def AND32ri : BinOpRI<0x80, "and", Xi32, X86and_flag, MRM4r>;
def AND64ri32: BinOpRI<0x80, "and", Xi64, X86and_flag, MRM4r>;
def AND64ri32 : RIi32<0x81, MRM4r,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, EFLAGS,
(X86and_flag GR64:$src1, i64immSExt32:$src2))]>;
def AND16ri8 : Ii8<0x83, MRM4r, def AND16ri8 : Ii8<0x83, MRM4r,
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),