forked from OSchip/llvm-project
parent
3ac907def8
commit
3529aa5fc2
|
@ -30,7 +30,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
|
|||
Scale = 0;
|
||||
return ConstantInt::get(Val->getType(), 0);
|
||||
}
|
||||
|
||||
|
||||
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
|
||||
// Cannot look past anything that might overflow.
|
||||
OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
|
||||
|
@ -47,19 +47,19 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
|
|||
Offset = 0;
|
||||
return I->getOperand(0);
|
||||
}
|
||||
|
||||
|
||||
if (I->getOpcode() == Instruction::Mul) {
|
||||
// This value is scaled by 'RHS'.
|
||||
Scale = RHS->getZExtValue();
|
||||
Offset = 0;
|
||||
return I->getOperand(0);
|
||||
}
|
||||
|
||||
|
||||
if (I->getOpcode() == Instruction::Add) {
|
||||
// We have X+C. Check to see if we really have (X*C2)+C1,
|
||||
// We have X+C. Check to see if we really have (X*C2)+C1,
|
||||
// where C1 is divisible by C2.
|
||||
unsigned SubScale;
|
||||
Value *SubVal =
|
||||
Value *SubVal =
|
||||
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
|
||||
Offset += RHS->getZExtValue();
|
||||
Scale = SubScale;
|
||||
|
@ -82,7 +82,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|||
if (!TD) return 0;
|
||||
|
||||
PointerType *PTy = cast<PointerType>(CI.getType());
|
||||
|
||||
|
||||
BuilderTy AllocaBuilder(*Builder);
|
||||
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
|
||||
|
||||
|
@ -110,7 +110,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|||
uint64_t ArrayOffset;
|
||||
Value *NumElements = // See if the array size is a decomposable linear expr.
|
||||
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
|
||||
|
||||
|
||||
// If we can now satisfy the modulus, by using a non-1 scale, we really can
|
||||
// do the xform.
|
||||
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
|
||||
|
@ -125,17 +125,17 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|||
// Insert before the alloca, not before the cast.
|
||||
Amt = AllocaBuilder.CreateMul(Amt, NumElements);
|
||||
}
|
||||
|
||||
|
||||
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
|
||||
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
|
||||
Offset, true);
|
||||
Amt = AllocaBuilder.CreateAdd(Amt, Off);
|
||||
}
|
||||
|
||||
|
||||
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
|
||||
New->setAlignment(AI.getAlignment());
|
||||
New->takeName(&AI);
|
||||
|
||||
|
||||
// If the allocation has multiple real uses, insert a cast and change all
|
||||
// things that used it to use the new cast. This will also hack on CI, but it
|
||||
// will die soon.
|
||||
|
@ -148,10 +148,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|||
return ReplaceInstUsesWith(CI, New);
|
||||
}
|
||||
|
||||
/// EvaluateInDifferentType - Given an expression that
|
||||
/// EvaluateInDifferentType - Given an expression that
|
||||
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
|
||||
/// insert the code to evaluate the expression.
|
||||
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
||||
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
||||
bool isSigned) {
|
||||
if (Constant *C = dyn_cast<Constant>(V)) {
|
||||
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
|
||||
|
@ -181,7 +181,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
|||
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
||||
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
||||
break;
|
||||
}
|
||||
}
|
||||
case Instruction::Trunc:
|
||||
case Instruction::ZExt:
|
||||
case Instruction::SExt:
|
||||
|
@ -190,7 +190,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
|||
// new.
|
||||
if (I->getOperand(0)->getType() == Ty)
|
||||
return I->getOperand(0);
|
||||
|
||||
|
||||
// Otherwise, must be the same type of cast, so just reinsert a new one.
|
||||
// This also handles the case of zext(trunc(x)) -> zext(x).
|
||||
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
|
||||
|
@ -212,11 +212,11 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
|||
Res = NPN;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
default:
|
||||
// TODO: Can handle more cases here.
|
||||
llvm_unreachable("Unreachable!");
|
||||
}
|
||||
|
||||
|
||||
Res->takeName(I);
|
||||
return InsertNewInstWith(Res, *I);
|
||||
}
|
||||
|
@ -224,7 +224,7 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
|||
|
||||
/// This function is a wrapper around CastInst::isEliminableCastPair. It
|
||||
/// simply extracts arguments and returns what that function returns.
|
||||
static Instruction::CastOps
|
||||
static Instruction::CastOps
|
||||
isEliminableCastPair(
|
||||
const CastInst *CI, ///< The first cast instruction
|
||||
unsigned opcode, ///< The opcode of the second cast instruction
|
||||
|
@ -253,7 +253,7 @@ isEliminableCastPair(
|
|||
if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
|
||||
(Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
|
||||
Res = 0;
|
||||
|
||||
|
||||
return Instruction::CastOps(Res);
|
||||
}
|
||||
|
||||
|
@ -265,18 +265,18 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
|
|||
Type *Ty) {
|
||||
// Noop casts and casts of constants should be eliminated trivially.
|
||||
if (V->getType() == Ty || isa<Constant>(V)) return false;
|
||||
|
||||
|
||||
// If this is another cast that can be eliminated, we prefer to have it
|
||||
// eliminated.
|
||||
if (const CastInst *CI = dyn_cast<CastInst>(V))
|
||||
if (isEliminableCastPair(CI, opc, Ty, TD))
|
||||
return false;
|
||||
|
||||
|
||||
// If this is a vector sext from a compare, then we don't want to break the
|
||||
// idiom where each element of the extended vector is either zero or all ones.
|
||||
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
|
||||
return false;
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -288,7 +288,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
|
|||
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
|
||||
// eliminate it now.
|
||||
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
|
||||
if (Instruction::CastOps opc =
|
||||
if (Instruction::CastOps opc =
|
||||
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
|
||||
// The first cast (CSrc) is eliminable so we need to fix up or replace
|
||||
// the second cast (CI). CSrc will then have a good chance of being dead.
|
||||
|
@ -311,7 +311,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
|
|||
if (Instruction *NV = FoldOpIntoPhi(CI))
|
||||
return NV;
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -330,15 +330,15 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
|
|||
// We can always evaluate constants in another type.
|
||||
if (isa<Constant>(V))
|
||||
return true;
|
||||
|
||||
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (!I) return false;
|
||||
|
||||
|
||||
Type *OrigTy = V->getType();
|
||||
|
||||
|
||||
// If this is an extension from the dest type, we can eliminate it, even if it
|
||||
// has multiple uses.
|
||||
if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
|
||||
if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
|
||||
I->getOperand(0)->getType() == Ty)
|
||||
return true;
|
||||
|
||||
|
@ -423,29 +423,29 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) {
|
|||
// TODO: Can handle more cases here.
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
||||
if (Instruction *Result = commonCastTransforms(CI))
|
||||
return Result;
|
||||
|
||||
// See if we can simplify any instructions used by the input whose sole
|
||||
|
||||
// See if we can simplify any instructions used by the input whose sole
|
||||
// purpose is to compute bits we don't care about.
|
||||
if (SimplifyDemandedInstructionBits(CI))
|
||||
return &CI;
|
||||
|
||||
|
||||
Value *Src = CI.getOperand(0);
|
||||
Type *DestTy = CI.getType(), *SrcTy = Src->getType();
|
||||
|
||||
|
||||
// Attempt to truncate the entire input expression tree to the destination
|
||||
// type. Only do this if the dest type is a simple type, don't convert the
|
||||
// expression tree to something weird like i93 unless the source is also
|
||||
// strange.
|
||||
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
||||
CanEvaluateTruncated(Src, DestTy)) {
|
||||
|
||||
|
||||
// If this cast is a truncate, evaluting in a different type always
|
||||
// eliminates the cast, so it is always a win.
|
||||
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
||||
|
@ -462,7 +462,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
|||
Value *Zero = Constant::getNullValue(Src->getType());
|
||||
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
|
||||
}
|
||||
|
||||
|
||||
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
|
||||
Value *A = 0; ConstantInt *Cst = 0;
|
||||
if (Src->hasOneUse() &&
|
||||
|
@ -472,7 +472,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
|||
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
|
||||
// between ASize and ResultSize.
|
||||
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
|
||||
|
||||
|
||||
// If the shift amount is larger than the size of A, then the result is
|
||||
// known to be zero because all the input bits got shifted out.
|
||||
if (Cst->getZExtValue() >= ASize)
|
||||
|
@ -485,7 +485,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
|||
Shift->takeName(Src);
|
||||
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
|
||||
}
|
||||
|
||||
|
||||
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
|
||||
// type isn't non-native.
|
||||
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
|
||||
|
@ -508,7 +508,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|||
// cast to integer to avoid the comparison.
|
||||
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
|
||||
const APInt &Op1CV = Op1C->getValue();
|
||||
|
||||
|
||||
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
|
||||
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
|
||||
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
|
||||
|
@ -538,14 +538,14 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|||
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
|
||||
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
|
||||
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
||||
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
|
||||
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
|
||||
// This only works for EQ and NE
|
||||
ICI->isEquality()) {
|
||||
// If Op1C some other power of two, convert:
|
||||
uint32_t BitWidth = Op1C->getType()->getBitWidth();
|
||||
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
||||
ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
|
||||
|
||||
|
||||
APInt KnownZeroMask(~KnownZero);
|
||||
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
|
||||
if (!DoXform) return ICI;
|
||||
|
@ -559,7 +559,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|||
Res = ConstantExpr::getZExt(Res, CI.getType());
|
||||
return ReplaceInstUsesWith(CI, Res);
|
||||
}
|
||||
|
||||
|
||||
uint32_t ShiftAmt = KnownZeroMask.logBase2();
|
||||
Value *In = ICI->getOperand(0);
|
||||
if (ShiftAmt) {
|
||||
|
@ -568,12 +568,12 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|||
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
|
||||
In->getName()+".lobit");
|
||||
}
|
||||
|
||||
|
||||
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
|
||||
Constant *One = ConstantInt::get(In->getType(), 1);
|
||||
In = Builder->CreateXor(In, One);
|
||||
}
|
||||
|
||||
|
||||
if (CI.getType() == In->getType())
|
||||
return ReplaceInstUsesWith(CI, In);
|
||||
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
|
||||
|
@ -646,19 +646,19 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
|
|||
BitsToClear = 0;
|
||||
if (isa<Constant>(V))
|
||||
return true;
|
||||
|
||||
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (!I) return false;
|
||||
|
||||
|
||||
// If the input is a truncate from the destination type, we can trivially
|
||||
// eliminate it.
|
||||
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
|
||||
return true;
|
||||
|
||||
|
||||
// We can't extend or shrink something that has multiple uses: doing so would
|
||||
// require duplicating the instruction in general, which isn't profitable.
|
||||
if (!I->hasOneUse()) return false;
|
||||
|
||||
|
||||
unsigned Opc = I->getOpcode(), Tmp;
|
||||
switch (Opc) {
|
||||
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
|
||||
|
@ -678,7 +678,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
|
|||
// These can all be promoted if neither operand has 'bits to clear'.
|
||||
if (BitsToClear == 0 && Tmp == 0)
|
||||
return true;
|
||||
|
||||
|
||||
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
|
||||
// other side, BitsToClear is ok.
|
||||
if (Tmp == 0 &&
|
||||
|
@ -691,10 +691,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
|
|||
APInt::getHighBitsSet(VSize, BitsToClear)))
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Otherwise, we don't know how to analyze this BitsToClear case yet.
|
||||
return false;
|
||||
|
||||
|
||||
case Instruction::LShr:
|
||||
// We can promote lshr(x, cst) if we can promote x. This requires the
|
||||
// ultimate 'and' to clear out the high zero bits we're clearing out though.
|
||||
|
@ -716,7 +716,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
|
|||
Tmp != BitsToClear)
|
||||
return false;
|
||||
return true;
|
||||
|
||||
|
||||
case Instruction::PHI: {
|
||||
// We can change a phi if we can change all operands. Note that we never
|
||||
// get into trouble with cyclic PHIs here because we only consider
|
||||
|
@ -743,44 +743,44 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|||
// eliminated before we try to optimize this zext.
|
||||
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
|
||||
return 0;
|
||||
|
||||
|
||||
// If one of the common conversion will work, do it.
|
||||
if (Instruction *Result = commonCastTransforms(CI))
|
||||
return Result;
|
||||
|
||||
// See if we can simplify any instructions used by the input whose sole
|
||||
// See if we can simplify any instructions used by the input whose sole
|
||||
// purpose is to compute bits we don't care about.
|
||||
if (SimplifyDemandedInstructionBits(CI))
|
||||
return &CI;
|
||||
|
||||
|
||||
Value *Src = CI.getOperand(0);
|
||||
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
|
||||
|
||||
|
||||
// Attempt to extend the entire input expression tree to the destination
|
||||
// type. Only do this if the dest type is a simple type, don't convert the
|
||||
// expression tree to something weird like i93 unless the source is also
|
||||
// strange.
|
||||
unsigned BitsToClear;
|
||||
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
||||
CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
|
||||
CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
|
||||
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
|
||||
"Unreasonable BitsToClear");
|
||||
|
||||
|
||||
// Okay, we can transform this! Insert the new expression now.
|
||||
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
||||
" to avoid zero extend: " << CI);
|
||||
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
|
||||
assert(Res->getType() == DestTy);
|
||||
|
||||
|
||||
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
|
||||
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
||||
|
||||
|
||||
// If the high bits are already filled with zeros, just replace this
|
||||
// cast with the result.
|
||||
if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
|
||||
DestBitSize-SrcBitsKept)))
|
||||
return ReplaceInstUsesWith(CI, Res);
|
||||
|
||||
|
||||
// We need to emit an AND to clear the high bits.
|
||||
Constant *C = ConstantInt::get(Res->getType(),
|
||||
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
|
||||
|
@ -792,7 +792,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|||
// 'and' which will be much cheaper than the pair of casts.
|
||||
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
|
||||
// TODO: Subsume this into EvaluateInDifferentType.
|
||||
|
||||
|
||||
// Get the sizes of the types involved. We know that the intermediate type
|
||||
// will be smaller than A or C, but don't know the relation between A and C.
|
||||
Value *A = CSrc->getOperand(0);
|
||||
|
@ -809,7 +809,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|||
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
|
||||
return new ZExtInst(And, CI.getType());
|
||||
}
|
||||
|
||||
|
||||
if (SrcSize == DstSize) {
|
||||
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
||||
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
|
||||
|
@ -818,7 +818,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|||
if (SrcSize > DstSize) {
|
||||
Value *Trunc = Builder->CreateTrunc(A, CI.getType());
|
||||
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
|
||||
return BinaryOperator::CreateAnd(Trunc,
|
||||
return BinaryOperator::CreateAnd(Trunc,
|
||||
ConstantInt::get(Trunc->getType(),
|
||||
AndValue));
|
||||
}
|
||||
|
@ -876,7 +876,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|||
Value *New = Builder->CreateZExt(X, CI.getType());
|
||||
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -989,14 +989,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
|
|||
// If this is a constant, it can be trivially promoted.
|
||||
if (isa<Constant>(V))
|
||||
return true;
|
||||
|
||||
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (!I) return false;
|
||||
|
||||
|
||||
// If this is a truncate from the dest type, we can trivially eliminate it.
|
||||
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
|
||||
return true;
|
||||
|
||||
|
||||
// We can't extend or shrink something that has multiple uses: doing so would
|
||||
// require duplicating the instruction in general, which isn't profitable.
|
||||
if (!I->hasOneUse()) return false;
|
||||
|
@ -1015,14 +1015,14 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
|
|||
// These operators can all arbitrarily be extended if their inputs can.
|
||||
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
|
||||
CanEvaluateSExtd(I->getOperand(1), Ty);
|
||||
|
||||
|
||||
//case Instruction::Shl: TODO
|
||||
//case Instruction::LShr: TODO
|
||||
|
||||
|
||||
case Instruction::Select:
|
||||
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
|
||||
CanEvaluateSExtd(I->getOperand(2), Ty);
|
||||
|
||||
|
||||
case Instruction::PHI: {
|
||||
// We can change a phi if we can change all operands. Note that we never
|
||||
// get into trouble with cyclic PHIs here because we only consider
|
||||
|
@ -1036,7 +1036,7 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
|
|||
// TODO: Can handle more cases here.
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1045,15 +1045,15 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
|||
// eliminated before we try to optimize this zext.
|
||||
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
|
||||
return 0;
|
||||
|
||||
|
||||
if (Instruction *I = commonCastTransforms(CI))
|
||||
return I;
|
||||
|
||||
// See if we can simplify any instructions used by the input whose sole
|
||||
|
||||
// See if we can simplify any instructions used by the input whose sole
|
||||
// purpose is to compute bits we don't care about.
|
||||
if (SimplifyDemandedInstructionBits(CI))
|
||||
return &CI;
|
||||
|
||||
|
||||
Value *Src = CI.getOperand(0);
|
||||
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
|
||||
|
||||
|
@ -1076,7 +1076,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
|||
// cast with the result.
|
||||
if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
|
||||
return ReplaceInstUsesWith(CI, Res);
|
||||
|
||||
|
||||
// We need to emit a shl + ashr to do the sign extend.
|
||||
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
|
||||
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
|
||||
|
@ -1089,7 +1089,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
|||
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
|
||||
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
||||
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
||||
|
||||
|
||||
// We need to emit a shl + ashr to do the sign extend.
|
||||
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
|
||||
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
|
||||
|
@ -1125,7 +1125,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
|||
A = Builder->CreateShl(A, ShAmtV, CI.getName());
|
||||
return BinaryOperator::CreateAShr(A, ShAmtV);
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1147,7 +1147,7 @@ static Value *LookThroughFPExtensions(Value *V) {
|
|||
if (Instruction *I = dyn_cast<Instruction>(V))
|
||||
if (I->getOpcode() == Instruction::FPExt)
|
||||
return LookThroughFPExtensions(I->getOperand(0));
|
||||
|
||||
|
||||
// If this value is a constant, return the constant in the smallest FP type
|
||||
// that can accurately represent it. This allows us to turn
|
||||
// (float)((double)X+2.0) into x+2.0f.
|
||||
|
@ -1166,14 +1166,14 @@ static Value *LookThroughFPExtensions(Value *V) {
|
|||
return V;
|
||||
// Don't try to shrink to various long double types.
|
||||
}
|
||||
|
||||
|
||||
return V;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
||||
if (Instruction *I = commonCastTransforms(CI))
|
||||
return I;
|
||||
|
||||
|
||||
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
|
||||
// smaller than the destination type, we can eliminate the truncate by doing
|
||||
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
|
||||
|
@ -1190,7 +1190,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|||
Type *SrcTy = OpI->getType();
|
||||
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
|
||||
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
|
||||
if (LHSTrunc->getType() != SrcTy &&
|
||||
if (LHSTrunc->getType() != SrcTy &&
|
||||
RHSTrunc->getType() != SrcTy) {
|
||||
unsigned DstSize = CI.getType()->getScalarSizeInBits();
|
||||
// If the source types were both smaller than the destination type of
|
||||
|
@ -1202,7 +1202,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|||
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
|
||||
}
|
||||
}
|
||||
break;
|
||||
break;
|
||||
}
|
||||
|
||||
// (fptrunc (fneg x)) -> (fneg (fptrunc x))
|
||||
|
@ -1246,7 +1246,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|||
Arg->getOperand(0)->getType()->isFloatTy()) {
|
||||
Function *Callee = Call->getCalledFunction();
|
||||
Module *M = CI.getParent()->getParent()->getParent();
|
||||
Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
|
||||
Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
|
||||
Callee->getAttributes(),
|
||||
Builder->getFloatTy(),
|
||||
Builder->getFloatTy(),
|
||||
|
@ -1254,15 +1254,15 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|||
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
|
||||
"sqrtfcall");
|
||||
ret->setAttributes(Callee->getAttributes());
|
||||
|
||||
|
||||
|
||||
|
||||
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
|
||||
ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
|
||||
EraseInstFromFunction(*Call);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1280,7 +1280,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
|
|||
// This is safe if the intermediate type has enough bits in its mantissa to
|
||||
// accurately represent all values of X. For example, do not do this with
|
||||
// i64->float->i64. This is also safe for sitofp case, because any negative
|
||||
// 'X' value would cause an undefined result for the fptoui.
|
||||
// 'X' value would cause an undefined result for the fptoui.
|
||||
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
||||
OpI->getOperand(0)->getType() == FI.getType() &&
|
||||
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
|
||||
|
@ -1294,19 +1294,19 @@ Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
|
|||
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
||||
if (OpI == 0)
|
||||
return commonCastTransforms(FI);
|
||||
|
||||
|
||||
// fptosi(sitofp(X)) --> X
|
||||
// fptosi(uitofp(X)) --> X
|
||||
// This is safe if the intermediate type has enough bits in its mantissa to
|
||||
// accurately represent all values of X. For example, do not do this with
|
||||
// i64->float->i64. This is also safe for sitofp case, because any negative
|
||||
// 'X' value would cause an undefined result for the fptoui.
|
||||
// 'X' value would cause an undefined result for the fptoui.
|
||||
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
||||
OpI->getOperand(0)->getType() == FI.getType() &&
|
||||
(int)FI.getType()->getScalarSizeInBits() <=
|
||||
OpI->getType()->getFPMantissaWidth())
|
||||
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
||||
|
||||
|
||||
return commonCastTransforms(FI);
|
||||
}
|
||||
|
||||
|
@ -1336,7 +1336,7 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
|
|||
return new IntToPtrInst(P, CI.getType());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (Instruction *I = commonCastTransforms(CI))
|
||||
return I;
|
||||
|
||||
|
@ -1346,19 +1346,19 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
|
|||
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
|
||||
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
|
||||
Value *Src = CI.getOperand(0);
|
||||
|
||||
|
||||
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
|
||||
// If casting the result of a getelementptr instruction with no offset, turn
|
||||
// this into a cast of the original pointer!
|
||||
if (GEP->hasAllZeroIndices()) {
|
||||
// Changing the cast operand is usually not a good idea but it is safe
|
||||
// here because the pointer operand is being replaced with another
|
||||
// here because the pointer operand is being replaced with another
|
||||
// pointer operand so the opcode doesn't need to change.
|
||||
Worklist.Add(GEP);
|
||||
CI.setOperand(0, GEP->getOperand(0));
|
||||
return &CI;
|
||||
}
|
||||
|
||||
|
||||
// If the GEP has a single use, and the base pointer is a bitcast, and the
|
||||
// GEP computes a constant offset, see if we can convert these three
|
||||
// instructions into fewer. This typically happens with unions and other
|
||||
|
@ -1379,15 +1379,15 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
|
|||
Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
|
||||
Builder->CreateGEP(OrigBase, NewIndices);
|
||||
NGEP->takeName(GEP);
|
||||
|
||||
|
||||
if (isa<BitCastInst>(CI))
|
||||
return new BitCastInst(NGEP, CI.getType());
|
||||
assert(isa<PtrToIntInst>(CI));
|
||||
return new PtrToIntInst(NGEP, CI.getType());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return commonCastTransforms(CI);
|
||||
}
|
||||
|
||||
|
@ -1407,7 +1407,7 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
|
|||
return new ZExtInst(P, CI.getType());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return commonPointerCastTransforms(CI);
|
||||
}
|
||||
|
||||
|
@ -1422,33 +1422,33 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
|
|||
// element size, or the input is a multiple of the output element size.
|
||||
// Convert the input type to have the same element type as the output.
|
||||
VectorType *SrcTy = cast<VectorType>(InVal->getType());
|
||||
|
||||
|
||||
if (SrcTy->getElementType() != DestTy->getElementType()) {
|
||||
// The input types don't need to be identical, but for now they must be the
|
||||
// same size. There is no specific reason we couldn't handle things like
|
||||
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
|
||||
// there yet.
|
||||
// there yet.
|
||||
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
|
||||
DestTy->getElementType()->getPrimitiveSizeInBits())
|
||||
return 0;
|
||||
|
||||
|
||||
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
|
||||
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
|
||||
}
|
||||
|
||||
|
||||
// Now that the element types match, get the shuffle mask and RHS of the
|
||||
// shuffle to use, which depends on whether we're increasing or decreasing the
|
||||
// size of the input.
|
||||
SmallVector<uint32_t, 16> ShuffleMask;
|
||||
Value *V2;
|
||||
|
||||
|
||||
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
|
||||
// If we're shrinking the number of elements, just shuffle in the low
|
||||
// elements from the input and use undef as the second shuffle input.
|
||||
V2 = UndefValue::get(SrcTy);
|
||||
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
|
||||
ShuffleMask.push_back(i);
|
||||
|
||||
|
||||
} else {
|
||||
// If we're increasing the number of elements, shuffle in all of the
|
||||
// elements from InVal and fill the rest of the result elements with zeros
|
||||
|
@ -1462,7 +1462,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
|
|||
for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
|
||||
ShuffleMask.push_back(SrcElts);
|
||||
}
|
||||
|
||||
|
||||
return new ShuffleVectorInst(InVal, V2,
|
||||
ConstantDataVector::get(V2->getContext(),
|
||||
ShuffleMask));
|
||||
|
@ -1489,7 +1489,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|||
Type *VecEltTy) {
|
||||
// Undef values never contribute useful bits to the result.
|
||||
if (isa<UndefValue>(V)) return true;
|
||||
|
||||
|
||||
// If we got down to a value of the right type, we win, try inserting into the
|
||||
// right element.
|
||||
if (V->getType() == VecEltTy) {
|
||||
|
@ -1497,15 +1497,15 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|||
if (Constant *C = dyn_cast<Constant>(V))
|
||||
if (C->isNullValue())
|
||||
return true;
|
||||
|
||||
|
||||
// Fail if multiple elements are inserted into this slot.
|
||||
if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
|
||||
return false;
|
||||
|
||||
|
||||
Elements[ElementIndex] = V;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
if (Constant *C = dyn_cast<Constant>(V)) {
|
||||
// Figure out the # elements this provides, and bitcast it or slice it up
|
||||
// as required.
|
||||
|
@ -1516,7 +1516,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|||
if (NumElts == 1)
|
||||
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
|
||||
ElementIndex, Elements, VecEltTy);
|
||||
|
||||
|
||||
// Okay, this is a constant that covers multiple elements. Slice it up into
|
||||
// pieces and insert each element-sized piece into the vector.
|
||||
if (!isa<IntegerType>(C->getType()))
|
||||
|
@ -1524,7 +1524,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|||
C->getType()->getPrimitiveSizeInBits()));
|
||||
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
|
||||
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
|
||||
|
||||
|
||||
for (unsigned i = 0; i != NumElts; ++i) {
|
||||
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
|
||||
i*ElementSize));
|
||||
|
@ -1534,23 +1534,23 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
if (!V->hasOneUse()) return false;
|
||||
|
||||
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (I == 0) return false;
|
||||
switch (I->getOpcode()) {
|
||||
default: return false; // Unhandled case.
|
||||
case Instruction::BitCast:
|
||||
return CollectInsertionElements(I->getOperand(0), ElementIndex,
|
||||
Elements, VecEltTy);
|
||||
Elements, VecEltTy);
|
||||
case Instruction::ZExt:
|
||||
if (!isMultipleOfTypeSize(
|
||||
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
|
||||
VecEltTy))
|
||||
return false;
|
||||
return CollectInsertionElements(I->getOperand(0), ElementIndex,
|
||||
Elements, VecEltTy);
|
||||
Elements, VecEltTy);
|
||||
case Instruction::Or:
|
||||
return CollectInsertionElements(I->getOperand(0), ElementIndex,
|
||||
Elements, VecEltTy) &&
|
||||
|
@ -1562,11 +1562,11 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|||
if (CI == 0) return false;
|
||||
if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
|
||||
unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
|
||||
|
||||
|
||||
return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
|
||||
Elements, VecEltTy);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1601,11 +1601,11 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
|
|||
Value *Result = Constant::getNullValue(CI.getType());
|
||||
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
|
||||
if (Elements[i] == 0) continue; // Unset element.
|
||||
|
||||
|
||||
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
|
||||
IC.Builder->getInt32(i));
|
||||
}
|
||||
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
@ -1633,11 +1633,11 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
|
|||
VecTy->getPrimitiveSizeInBits() / DestWidth);
|
||||
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
|
||||
}
|
||||
|
||||
|
||||
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// bitcast(trunc(lshr(bitcast(somevector), cst))
|
||||
ConstantInt *ShAmt = 0;
|
||||
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
|
||||
|
@ -1654,7 +1654,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
|
|||
VecTy->getPrimitiveSizeInBits() / DestWidth);
|
||||
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
|
||||
}
|
||||
|
||||
|
||||
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
|
||||
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
|
||||
}
|
||||
|
@ -1678,12 +1678,12 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
PointerType *SrcPTy = cast<PointerType>(SrcTy);
|
||||
Type *DstElTy = DstPTy->getElementType();
|
||||
Type *SrcElTy = SrcPTy->getElementType();
|
||||
|
||||
|
||||
// If the address spaces don't match, don't eliminate the bitcast, which is
|
||||
// required for changing types.
|
||||
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
|
||||
return 0;
|
||||
|
||||
|
||||
// If we are casting a alloca to a pointer to a type of the same
|
||||
// size, rewrite the allocation instruction to allocate the "right" type.
|
||||
// There is no need to modify malloc calls because it is their bitcast that
|
||||
|
@ -1691,14 +1691,14 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
|
||||
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
|
||||
return V;
|
||||
|
||||
|
||||
// If the source and destination are pointers, and this cast is equivalent
|
||||
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
|
||||
// This can enhance SROA and other transforms that want type-safe pointers.
|
||||
Constant *ZeroUInt =
|
||||
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
|
||||
unsigned NumZeros = 0;
|
||||
while (SrcElTy != DstElTy &&
|
||||
while (SrcElTy != DstElTy &&
|
||||
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
|
||||
SrcElTy->getNumContainedTypes() /* not "{}" */) {
|
||||
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
|
||||
|
@ -1711,7 +1711,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
return GetElementPtrInst::CreateInBounds(Src, Idxs);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Try to optimize int -> float bitcasts.
|
||||
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
|
||||
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
|
||||
|
@ -1724,7 +1724,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
||||
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
|
||||
}
|
||||
|
||||
|
||||
if (isa<IntegerType>(SrcTy)) {
|
||||
// If this is a cast from an integer to vector, check to see if the input
|
||||
// is a trunc or zext of a bitcast from vector. If so, we can replace all
|
||||
|
@ -1737,7 +1737,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
cast<VectorType>(DestTy), *this))
|
||||
return I;
|
||||
}
|
||||
|
||||
|
||||
// If the input is an 'or' instruction, we may be doing shifts and ors to
|
||||
// assemble the elements of the vector manually. Try to rip the code out
|
||||
// and replace it with insertelements.
|
||||
|
@ -1748,7 +1748,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
|
||||
if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
|
||||
if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
|
||||
Value *Elem =
|
||||
Value *Elem =
|
||||
Builder->CreateExtractElement(Src,
|
||||
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
||||
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
|
||||
|
@ -1758,7 +1758,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
|
||||
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
|
||||
// a bitcast to a vector with the same # elts.
|
||||
if (SVI->hasOneUse() && DestTy->isVectorTy() &&
|
||||
if (SVI->hasOneUse() && DestTy->isVectorTy() &&
|
||||
cast<VectorType>(DestTy)->getNumElements() ==
|
||||
SVI->getType()->getNumElements() &&
|
||||
SVI->getType()->getNumElements() ==
|
||||
|
@ -1767,9 +1767,9 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
// If either of the operands is a cast from CI.getType(), then
|
||||
// evaluating the shuffle in the casted destination's type will allow
|
||||
// us to eliminate at least one cast.
|
||||
if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
|
||||
if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
|
||||
Tmp->getOperand(0)->getType() == DestTy) ||
|
||||
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
|
||||
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
|
||||
Tmp->getOperand(0)->getType() == DestTy)) {
|
||||
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
|
||||
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
|
||||
|
@ -1779,7 +1779,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (SrcTy->isPointerTy())
|
||||
return commonPointerCastTransforms(CI);
|
||||
return commonCastTransforms(CI);
|
||||
|
|
Loading…
Reference in New Issue