Adds support for spilling previously allocated live intervals to

handle cases in which a register is unavailable for spill code.
Adds LiveIntervalUnion::extract. While processing interferences on a
live virtual register, reuses the same Query object for each
physcial reg.

llvm-svn: 118423
This commit is contained in:
Andrew Trick 2010-11-08 18:02:08 +00:00
parent f3e224f830
commit 3528465232
4 changed files with 208 additions and 89 deletions

View File

@ -20,6 +20,44 @@
#include <algorithm>
using namespace llvm;
// Find the first segment in the range [segBegin,segments_.end()) that
// intersects with seg. If no intersection is found, return the first segI
// such that segI.start >= seg.end
//
// This logic is tied to the underlying LiveSegments data structure. For now, we
// use set::upper_bound to find the nearest starting position,
// then reverse iterate to find the first overlap.
//
// Upon entry we have segBegin.start < seg.end
// seg |--...
// \ .
// lvr ...-|
//
// After set::upper_bound, we have segI.start >= seg.start:
// seg |--...
// /
// lvr |--...
//
// Assuming intervals are disjoint, if an intersection exists, it must be the
// segment found or the one immediately preceeding it. We continue reverse
// iterating to return the first overlapping segment.
LiveIntervalUnion::SegmentIter
LiveIntervalUnion::upperBound(SegmentIter segBegin,
const LiveSegment &seg) {
assert(seg.end > segBegin->start && "segment iterator precondition");
// get the next LIU segment such that segI->start is not less than seg.start
//
// FIXME: Once we have a B+tree, we can make good use of segBegin as a hint to
// upper_bound. For now, we're forced to search again from the root each time.
SegmentIter segI = segments_.upper_bound(seg);
while (segI != segBegin) {
--segI;
if (seg.start >= segI->end)
return ++segI;
}
return segI;
}
// Merge a LiveInterval's segments. Guarantee no overlaps.
//
// Consider coalescing adjacent segments to save space, even though it makes
@ -29,7 +67,7 @@ void LiveIntervalUnion::unify(LiveInterval &lvr) {
SegmentIter segPos = segments_.begin();
for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
lvrI != lvrEnd; ++lvrI ) {
LiveSegment segment(lvrI->start, lvrI->end, lvr);
LiveSegment segment(lvrI->start, lvrI->end, &lvr);
segPos = segments_.insert(segPos, segment);
assert(*segPos == segment && "need equal val for equal key");
#ifndef NDEBUG
@ -47,40 +85,17 @@ void LiveIntervalUnion::unify(LiveInterval &lvr) {
}
}
// Low-level helper to find the first segment in the range [segI,segEnd) that
// intersects with a live virtual register segment, or segI.start >= lvr.end
//
// This logic is tied to the underlying LiveSegments data structure. For now, we
// use a binary search within the vector to find the nearest starting position,
// then reverse iterate to find the first overlap.
//
// Upon entry we have segI.start < lvrSeg.end
// seg |--...
// \ .
// lvr ...-|
//
// After binary search, we have segI.start >= lvrSeg.start:
// seg |--...
// /
// lvr |--...
//
// Assuming intervals are disjoint, if an intersection exists, it must be the
// segment found or immediately behind it. We continue reverse iterating to
// return the first overlap.
typedef LiveIntervalUnion::SegmentIter SegmentIter;
static SegmentIter upperBound(SegmentIter segBegin,
SegmentIter segEnd,
const LiveRange &lvrSeg) {
assert(lvrSeg.end > segBegin->start && "segment iterator precondition");
// get the next LIU segment such that setg.start is not less than
// lvrSeg.start
SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start);
while (segI != segBegin) {
--segI;
if (lvrSeg.start >= segI->end)
return ++segI;
// Remove a live virtual register's segments from this union.
void LiveIntervalUnion::extract(const LiveInterval &lvr) {
// Remove each of the virtual register's live segments from the map.
SegmentIter segPos = segments_.begin();
for (LiveInterval::const_iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
lvrI != lvrEnd; ++lvrI) {
LiveSegment seg(lvrI->start, lvrI->end, const_cast<LiveInterval*>(&lvr));
segPos = upperBound(segPos, seg);
assert(segPos != segments_.end() && "missing lvr segment");
segments_.erase(segPos++);
}
return segI;
}
// Private interface accessed by Query.
@ -102,8 +117,8 @@ static SegmentIter upperBound(SegmentIter segBegin,
// Assumes that segments are sorted by start position in both
// LiveInterval and LiveSegments.
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
LiveInterval::iterator lvrEnd = lvr_.end();
SegmentIter liuEnd = liu_.end();
LiveInterval::iterator lvrEnd = lvr_->end();
SegmentIter liuEnd = liu_->end();
while (ir.liuSegI_ != liuEnd) {
// Slowly advance the live virtual reg iterator until we surpass the next
// segment in this union. If this is ever used for coalescing of fixed
@ -115,7 +130,8 @@ void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
break;
// lvrSegI_ may have advanced far beyond liuSegI_,
// do a fast intersection test to "catch up"
ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_);
LiveSegment seg(ir.lvrSegI_->start, ir.lvrSegI_->end, lvr_);
ir.liuSegI_ = liu_->upperBound(ir.liuSegI_, seg);
// Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
if (ir.liuSegI_ == liuEnd)
break;
@ -135,7 +151,7 @@ LiveIntervalUnion::Query::firstInterference() {
if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
return firstInterference_;
}
firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin());
firstInterference_ = InterferenceResult(lvr_->begin(), liu_->begin());
findIntersection(firstInterference_);
return firstInterference_;
}
@ -147,12 +163,12 @@ bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
// Advance either the lvr or liu segment to ensure that we visit all unique
// overlapping pairs.
if (ir.lvrSegI_->end < ir.liuSegI_->end) {
if (++ir.lvrSegI_ == lvr_.end())
if (++ir.lvrSegI_ == lvr_->end())
return false;
}
else {
if (++ir.liuSegI_ == liu_.end()) {
ir.lvrSegI_ = lvr_.end();
if (++ir.liuSegI_ == liu_->end()) {
ir.lvrSegI_ = lvr_->end();
return false;
}
}

View File

@ -38,8 +38,8 @@ struct LiveSegment {
SlotIndex end;
LiveInterval *liveVirtReg;
LiveSegment(SlotIndex s, SlotIndex e, LiveInterval &lvr)
: start(s), end(e), liveVirtReg(&lvr) {}
LiveSegment(SlotIndex s, SlotIndex e, LiveInterval *lvr)
: start(s), end(e), liveVirtReg(lvr) {}
bool operator==(const LiveSegment &ls) const {
return start == ls.start && end == ls.end && liveVirtReg == ls.liveVirtReg;
@ -111,12 +111,16 @@ public:
SegmentIter begin() { return segments_.begin(); }
SegmentIter end() { return segments_.end(); }
// Return an iterator to the first segment after or including begin that
// intersects with lvrSeg.
SegmentIter upperBound(SegmentIter begin, const LiveSegment &seg);
// Add a live virtual register to this union and merge its segments.
// Holds a nonconst reference to the LVR for later maniplution.
void unify(LiveInterval &lvr);
// FIXME: needed by RegAllocGreedy
//void extract(const LiveInterval &li);
// Remove a live virtual register's segments from this union.
void extract(const LiveInterval &lvr);
/// Cache a single interference test result in the form of two intersecting
/// segments. This allows efficiently iterating over the interferences. The
@ -143,7 +147,7 @@ public:
const LiveInterval::iterator &lvrSegPos() const { return lvrSegI_; }
// Access the liu segment.
const SegmentIter &liuSeg() const { return liuSegI_; }
const SegmentIter &liuSegPos() const { return liuSegI_; }
bool operator==(const InterferenceResult &ir) const {
return lvrSegI_ == ir.lvrSegI_ && liuSegI_ == ir.liuSegI_;
@ -156,18 +160,40 @@ public:
/// Query interferences between a single live virtual register and a live
/// interval union.
class Query {
LiveIntervalUnion &liu_;
LiveInterval &lvr_;
LiveIntervalUnion *liu_;
LiveInterval *lvr_;
InterferenceResult firstInterference_;
// TBD: interfering vregs
public:
Query(LiveInterval &lvr, LiveIntervalUnion &liu): liu_(liu), lvr_(lvr) {}
Query(): liu_(), lvr_() {}
LiveInterval &lvr() const { return lvr_; }
Query(LiveInterval *lvr, LiveIntervalUnion *liu): liu_(liu), lvr_(lvr) {}
void clear() {
liu_ = NULL;
lvr_ = NULL;
firstInterference_ = InterferenceResult();
}
void init(LiveInterval *lvr, LiveIntervalUnion *liu) {
if (lvr_ == lvr) {
// We currently allow query objects to be reused acrossed live virtual
// registers, but always for the same live interval union.
assert(liu_ == liu && "inconsistent initialization");
// Retain cached results, e.g. firstInterference.
return;
}
liu_ = liu;
lvr_ = lvr;
// Clear cached results.
firstInterference_ = InterferenceResult();
}
LiveInterval &lvr() const { assert(lvr_ && "uninitialized"); return *lvr_; }
bool isInterference(const InterferenceResult &ir) const {
if (ir.lvrSegI_ != lvr_.end()) {
if (ir.lvrSegI_ != lvr_->end()) {
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) &&
"invalid segment iterators");
return true;
@ -178,7 +204,8 @@ public:
// Does this live virtual register interfere with the union.
bool checkInterference() { return isInterference(firstInterference()); }
// First pair of interfering segments, or a noninterfering result.
// Get the first pair of interfering segments, or a noninterfering result.
// This initializes the firstInterference_ cache.
InterferenceResult firstInterference();
// Treat the result as an iterator and advance to the next interfering pair

View File

@ -94,6 +94,10 @@ protected:
LiveIntervals *lis_;
LIUArray physReg2liu_;
// Current queries, one per physreg. They must be reinitialized each time we
// query on a new live virtual register.
OwningArrayPtr<LiveIntervalUnion::Query> queries_;
RegAllocBase(): tri_(0), vrm_(0), lis_(0) {}
virtual ~RegAllocBase() {}
@ -120,9 +124,15 @@ protected:
virtual void releaseMemory();
// Helper for checking interference between a live virtual register and a
// physical register, including all its register aliases.
bool checkPhysRegInterference(LiveIntervalUnion::Query &query, unsigned preg);
// physical register, including all its register aliases. If an interference
// exists, return the interfering register, which may be preg or an alias.
unsigned checkPhysRegInterference(LiveInterval& lvr, unsigned preg);
// Helper that spills all live virtual registers currently unified under preg
// that interfere with the most recently queried lvr.
void spillInterferences(unsigned preg,
SmallVectorImpl<LiveInterval*> &splitLVRs);
private:
void seedLiveVirtRegs(LiveVirtRegQueue &lvrQ);
};

View File

@ -17,10 +17,12 @@
#include "RegAllocBase.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
@ -31,13 +33,10 @@
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <queue>
@ -84,6 +83,9 @@ public:
virtual unsigned selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs);
void spillInterferences(unsigned preg,
SmallVectorImpl<LiveInterval*> &splitLVRs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
@ -170,6 +172,8 @@ void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
vrm_ = &vrm;
lis_ = &lis;
physReg2liu_.init(tri_->getNumRegs());
// Cache an interferece query for each physical reg
queries_.reset(new LiveIntervalUnion::Query[physReg2liu_.numRegs()]);
}
void RegAllocBase::LIUArray::clear() {
@ -238,38 +242,61 @@ void RegAllocBase::allocatePhysRegs() {
LVRVec splitLVRs;
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
if (availablePhysReg) {
assert(splitLVRs.empty() && "inconsistent splitting");
DEBUG(dbgs() << "allocating: " << tri_->getName(availablePhysReg) <<
" " << lvr << '\n');
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
physReg2liu_[availablePhysReg].unify(*lvr);
}
else {
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI) {
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
}
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI) {
DEBUG(dbgs() << "queuing new interval: " << **lvrI << "\n");
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
}
}
}
// Check if this live virtual reg interferes with a physical register. If not,
// then check for interference on each register that aliases with the physical
// register.
bool RegAllocBase::checkPhysRegInterference(LiveIntervalUnion::Query &query,
unsigned preg) {
if (query.checkInterference())
return true;
// register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &lvr,
unsigned preg) {
queries_[preg].init(&lvr, &physReg2liu_[preg]);
if (queries_[preg].checkInterference())
return preg;
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
// We assume it's very unlikely for a register in the alias set to also be
// in the original register class. So we don't bother caching the
// interference.
LiveIntervalUnion::Query subQuery(query.lvr(), physReg2liu_[*asI] );
if (subQuery.checkInterference())
return true;
queries_[*asI].init(&lvr, &physReg2liu_[*asI]);
if (queries_[*asI].checkInterference())
return *asI;
}
return false;
return 0;
}
// Spill all live virtual registers currently unified under preg that interfere
// with lvr.
void RABasic::spillInterferences(unsigned preg,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
SmallPtrSet<LiveInterval*, 8> spilledLVRs;
LiveIntervalUnion::Query &query = queries_[preg];
LiveIntervalUnion::InterferenceResult ir = query.firstInterference();
assert(query.isInterference(ir) && "expect interference");
do {
LiveInterval *lvr = ir.liuSegPos()->liveVirtReg;
if (!spilledLVRs.insert(lvr)) continue;
// Spill the previously allocated lvr.
SmallVector<LiveInterval*, 1> spillIs; // ignored
spiller_->spill(lvr, splitLVRs, spillIs);
} while (query.nextInterference(ir));
for (SmallPtrSetIterator<LiveInterval*> lvrI = spilledLVRs.begin(),
lvrEnd = spilledLVRs.end();
lvrI != lvrEnd; ++lvrI ) {
// Deallocate the interfering lvr by removing it from the preg union.
physReg2liu_[preg].extract(**lvrI);
}
// After extracting segments, the query's results are invalid.
query.clear();
}
//===----------------------------------------------------------------------===//
@ -289,24 +316,59 @@ bool RegAllocBase::checkPhysRegInterference(LiveIntervalUnion::Query &query,
// minimal, there is no value in caching them.
unsigned RABasic::selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
// Accumulate the min spill cost among the interferences, in case we spill.
unsigned minSpillReg = 0;
unsigned minSpillAlias = 0;
float minSpillWeight = lvr.weight;
// Check for an available reg in this class.
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
trcEnd = trc->allocation_order_end(*mf_);
trcI != trcEnd; ++trcI) {
unsigned preg = *trcI;
LiveIntervalUnion::Query query(lvr, physReg2liu_[preg]);
if (!checkPhysRegInterference(query, preg)) {
DEBUG(dbgs() << "\tallocating: " << tri_->getName(preg) << lvr << '\n');
unsigned interfReg = checkPhysRegInterference(lvr, preg);
if (interfReg == 0) {
return preg;
}
LiveIntervalUnion::InterferenceResult interf =
queries_[interfReg].firstInterference();
float interfWeight = interf.liuSegPos()->liveVirtReg->weight;
if (interfWeight < minSpillWeight ) {
minSpillReg = interfReg;
minSpillAlias = preg;
minSpillWeight = interfWeight;
}
}
DEBUG(dbgs() << "\tspilling: " << lvr << '\n');
SmallVector<LiveInterval*, 1> spillIs; // ignored
spiller_->spill(&lvr, splitLVRs, spillIs);
if (minSpillReg == 0) {
DEBUG(dbgs() << "spilling: " << lvr << '\n');
SmallVector<LiveInterval*, 1> spillIs; // ignored
spiller_->spill(&lvr, splitLVRs, spillIs);
// The live virtual register requesting to be allocated was spilled. So tell
// the caller not to allocate anything for this round.
return 0;
}
// Free the cheapest physical register.
spillInterferences(minSpillReg, splitLVRs);
// Tell the caller to allocate to this newly freed physical register.
assert(minSpillAlias != 0 && "need a free register after spilling");
// We just spilled the first register that interferes with minSpillAlias. We
// now assume minSpillAlias is free because only one register alias may
// interfere at a time. e.g. we ignore predication.
unsigned interfReg = checkPhysRegInterference(lvr, minSpillAlias);
if (interfReg != 0) {
dbgs() << "spilling cannot free " << tri_->getName(minSpillAlias) <<
" for " << lvr.reg << " with interference " <<
*queries_[interfReg].firstInterference().liuSegPos()->liveVirtReg << "\n";
llvm_unreachable("Interference after spill.");
}
return minSpillAlias;
}
// FIXME: update LiveStacks
return 0;
namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm);
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
@ -323,6 +385,10 @@ bool RABasic::runOnMachineFunction(MachineFunction &mf) {
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>());
// We may want to force InlineSpiller for this register allocator. For
// now we're also experimenting with the standard spiller.
//
//spiller_.reset(createInlineSpiller(*this, *mf_, *vrm_));
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
allocatePhysRegs();