Add ADT/IntervalMap.

This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.

Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.

The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.

The IntervalMap is initially intended to be used with SlotIndex intervals for:

- Backing store for LiveIntervalUnion that is smaller and faster than std::set.

- Backing store for LiveInterval with less overhead than std::vector for typical
  intervals and O(N log N) merging of large intervals. 99% of virtual registers
  need 4 entries or less and would benefit from the small object optimization.

- Backing store for LiveDebugVariable which doesn't exist yet, but will track
  debug variables during register allocation.

This is a work in progress. Missing items are:

- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.

llvm-svn: 119787
This commit is contained in:
Jakob Stoklund Olesen 2010-11-19 04:47:19 +00:00
parent 35f1a0d58d
commit 345945e355
5 changed files with 2124 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -19,6 +19,7 @@ add_llvm_library(LLVMSupport
FoldingSet.cpp
FormattedStream.cpp
GraphWriter.cpp
IntervalMap.cpp
IsInf.cpp
IsNAN.cpp
ManagedStatic.cpp

View File

@ -0,0 +1,60 @@
//===- lib/Support/IntervalMap.cpp - A sorted interval map ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the few non-templated functions in IntervalMap.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/IntervalMap.h"
namespace llvm {
namespace IntervalMapImpl {
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
const unsigned *CurSize, unsigned NewSize[],
unsigned Position, bool Grow) {
assert(Elements + Grow <= Nodes * Capacity && "Not enough room for elements");
assert(Position <= Elements && "Invalid position");
if (!Nodes)
return IdxPair();
// Trivial algorithm: left-leaning even distribution.
const unsigned PerNode = (Elements + Grow) / Nodes;
const unsigned Extra = (Elements + Grow) % Nodes;
IdxPair PosPair = IdxPair(Nodes, 0);
unsigned Sum = 0;
for (unsigned n = 0; n != Nodes; ++n) {
Sum += NewSize[n] = PerNode + (n < Extra);
if (PosPair.first == Nodes && Sum > Position)
PosPair = IdxPair(n, Position - (Sum - NewSize[n]));
}
assert(Sum == Elements + Grow && "Bad distribution sum");
// Subtract the Grow element that was added.
if (Grow) {
assert(PosPair.first < Nodes && "Bad algebra");
assert(NewSize[PosPair.first] && "Too few elements to need Grow");
--NewSize[PosPair.first];
}
#ifndef NDEBUG
Sum = 0;
for (unsigned n = 0; n != Nodes; ++n) {
assert(NewSize[n] <= Capacity && "Overallocated node");
Sum += NewSize[n];
}
assert(Sum == Elements && "Bad distribution sum");
#endif
return PosPair;
}
} // namespace IntervalMapImpl
} // namespace llvm

View File

@ -0,0 +1,357 @@
//===---- ADT/IntervalMapTest.cpp - IntervalMap unit tests ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/IntervalMap.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
typedef IntervalMap<unsigned, unsigned> UUMap;
// Empty map tests
TEST(IntervalMapTest, EmptyMap) {
UUMap::Allocator allocator;
UUMap map(allocator);
EXPECT_TRUE(map.empty());
// Lookup on empty map.
EXPECT_EQ(0u, map.lookup(0));
EXPECT_EQ(7u, map.lookup(0, 7));
EXPECT_EQ(0u, map.lookup(~0u-1));
EXPECT_EQ(7u, map.lookup(~0u-1, 7));
// Iterators.
EXPECT_TRUE(map.begin() == map.begin());
EXPECT_TRUE(map.begin() == map.end());
EXPECT_TRUE(map.end() == map.end());
EXPECT_FALSE(map.begin() != map.begin());
EXPECT_FALSE(map.begin() != map.end());
EXPECT_FALSE(map.end() != map.end());
EXPECT_FALSE(map.begin().valid());
EXPECT_FALSE(map.end().valid());
UUMap::iterator I = map.begin();
EXPECT_FALSE(I.valid());
EXPECT_TRUE(I == map.end());
}
// Single entry map tests
TEST(IntervalMapTest, SingleEntryMap) {
UUMap::Allocator allocator;
UUMap map(allocator);
map.insert(100, 150, 1);
EXPECT_FALSE(map.empty());
// Lookup around interval.
EXPECT_EQ(0u, map.lookup(0));
EXPECT_EQ(0u, map.lookup(99));
EXPECT_EQ(1u, map.lookup(100));
EXPECT_EQ(1u, map.lookup(101));
EXPECT_EQ(1u, map.lookup(125));
EXPECT_EQ(1u, map.lookup(149));
EXPECT_EQ(1u, map.lookup(150));
EXPECT_EQ(0u, map.lookup(151));
EXPECT_EQ(0u, map.lookup(200));
EXPECT_EQ(0u, map.lookup(~0u-1));
// Iterators.
EXPECT_TRUE(map.begin() == map.begin());
EXPECT_FALSE(map.begin() == map.end());
EXPECT_TRUE(map.end() == map.end());
EXPECT_TRUE(map.begin().valid());
EXPECT_FALSE(map.end().valid());
// Iter deref.
UUMap::iterator I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(150u, I.stop());
EXPECT_EQ(1u, I.value());
// Preincrement.
++I;
EXPECT_FALSE(I.valid());
EXPECT_FALSE(I == map.begin());
EXPECT_TRUE(I == map.end());
// PreDecrement.
--I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(150u, I.stop());
EXPECT_EQ(1u, I.value());
EXPECT_TRUE(I == map.begin());
EXPECT_FALSE(I == map.end());
}
// Flat coalescing tests.
TEST(IntervalMapTest, RootCoalescing) {
UUMap::Allocator allocator;
UUMap map(allocator);
map.insert(100, 150, 1);
// Coalesce from the left.
map.insert(90, 99, 1);
EXPECT_EQ(1, std::distance(map.begin(), map.end()));
EXPECT_EQ(90u, map.start());
EXPECT_EQ(150u, map.stop());
// Overlap left.
map.insert(80, 100, 1);
EXPECT_EQ(1, std::distance(map.begin(), map.end()));
EXPECT_EQ(80u, map.start());
EXPECT_EQ(150u, map.stop());
// Inside.
map.insert(100, 130, 1);
EXPECT_EQ(1, std::distance(map.begin(), map.end()));
EXPECT_EQ(80u, map.start());
EXPECT_EQ(150u, map.stop());
// Overlap both.
map.insert(70, 160, 1);
EXPECT_EQ(1, std::distance(map.begin(), map.end()));
EXPECT_EQ(70u, map.start());
EXPECT_EQ(160u, map.stop());
// Overlap right.
map.insert(80, 170, 1);
EXPECT_EQ(1, std::distance(map.begin(), map.end()));
EXPECT_EQ(70u, map.start());
EXPECT_EQ(170u, map.stop());
// Coalesce from the right.
map.insert(170, 200, 1);
EXPECT_EQ(1, std::distance(map.begin(), map.end()));
EXPECT_EQ(70u, map.start());
EXPECT_EQ(200u, map.stop());
// Non-coalesce from the left.
map.insert(60, 69, 2);
EXPECT_EQ(2, std::distance(map.begin(), map.end()));
EXPECT_EQ(60u, map.start());
EXPECT_EQ(200u, map.stop());
EXPECT_EQ(2u, map.lookup(69));
EXPECT_EQ(1u, map.lookup(70));
UUMap::iterator I = map.begin();
EXPECT_EQ(60u, I.start());
EXPECT_EQ(69u, I.stop());
EXPECT_EQ(2u, I.value());
++I;
EXPECT_EQ(70u, I.start());
EXPECT_EQ(200u, I.stop());
EXPECT_EQ(1u, I.value());
++I;
EXPECT_FALSE(I.valid());
// Non-coalesce from the right.
map.insert(201, 210, 2);
EXPECT_EQ(3, std::distance(map.begin(), map.end()));
EXPECT_EQ(60u, map.start());
EXPECT_EQ(210u, map.stop());
EXPECT_EQ(2u, map.lookup(201));
EXPECT_EQ(1u, map.lookup(200));
}
// Flat multi-coalescing tests.
TEST(IntervalMapTest, RootMultiCoalescing) {
UUMap::Allocator allocator;
UUMap map(allocator);
map.insert(140, 150, 1);
map.insert(160, 170, 1);
map.insert(100, 110, 1);
map.insert(120, 130, 1);
EXPECT_EQ(4, std::distance(map.begin(), map.end()));
EXPECT_EQ(100u, map.start());
EXPECT_EQ(170u, map.stop());
// Verify inserts.
UUMap::iterator I = map.begin();
EXPECT_EQ(100u, I.start());
EXPECT_EQ(110u, I.stop());
++I;
EXPECT_EQ(120u, I.start());
EXPECT_EQ(130u, I.stop());
++I;
EXPECT_EQ(140u, I.start());
EXPECT_EQ(150u, I.stop());
++I;
EXPECT_EQ(160u, I.start());
EXPECT_EQ(170u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Coalesce left with followers.
// [100;110] [120;130] [140;150] [160;170]
map.insert(111, 115, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(115u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(120u, I.start());
EXPECT_EQ(130u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(140u, I.start());
EXPECT_EQ(150u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(160u, I.start());
EXPECT_EQ(170u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Coalesce right with followers.
// [100;115] [120;130] [140;150] [160;170]
map.insert(135, 139, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(115u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(120u, I.start());
EXPECT_EQ(130u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(135u, I.start());
EXPECT_EQ(150u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(160u, I.start());
EXPECT_EQ(170u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Coalesce left and right with followers.
// [100;115] [120;130] [135;150] [160;170]
map.insert(131, 134, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(115u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(120u, I.start());
EXPECT_EQ(150u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(160u, I.start());
EXPECT_EQ(170u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Coalesce multiple with overlap right.
// [100;115] [120;150] [160;170]
map.insert(116, 165, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(170u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Coalesce multiple with overlap left
// [100;170]
map.insert(180, 190, 1);
map.insert(200, 210, 1);
map.insert(220, 230, 1);
// [100;170] [180;190] [200;210] [220;230]
map.insert(160, 199, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(100u, I.start());
EXPECT_EQ(210u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(220u, I.start());
EXPECT_EQ(230u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Overwrite 2 from gap to gap.
// [100;210] [220;230]
map.insert(50, 250, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(50u, I.start());
EXPECT_EQ(250u, I.stop());
++I;
EXPECT_FALSE(I.valid());
// Coalesce at end of full root.
// [50;250]
map.insert(260, 270, 1);
map.insert(280, 290, 1);
map.insert(300, 310, 1);
// [50;250] [260;270] [280;290] [300;310]
map.insert(311, 320, 1);
I = map.begin();
ASSERT_TRUE(I.valid());
EXPECT_EQ(50u, I.start());
EXPECT_EQ(250u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(260u, I.start());
EXPECT_EQ(270u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(280u, I.start());
EXPECT_EQ(290u, I.stop());
++I;
ASSERT_TRUE(I.valid());
EXPECT_EQ(300u, I.start());
EXPECT_EQ(320u, I.stop());
++I;
EXPECT_FALSE(I.valid());
}
// Branched, non-coalescing tests.
TEST(IntervalMapTest, Branched) {
UUMap::Allocator allocator;
UUMap map(allocator);
// Insert enough intervals to force a branched tree.
// This creates 9 leaf nodes with 11 elements each, tree height = 1.
for (unsigned i = 1; i < 100; ++i)
map.insert(10*i, 10*i+5, i);
// Tree limits.
EXPECT_FALSE(map.empty());
EXPECT_EQ(10u, map.start());
EXPECT_EQ(995u, map.stop());
// Tree lookup.
for (unsigned i = 1; i < 100; ++i) {
EXPECT_EQ(0u, map.lookup(10*i-1));
EXPECT_EQ(i, map.lookup(10*i));
EXPECT_EQ(i, map.lookup(10*i+5));
EXPECT_EQ(0u, map.lookup(10*i+6));
}
// Forward iteration.
UUMap::iterator I = map.begin();
for (unsigned i = 1; i < 100; ++i) {
ASSERT_TRUE(I.valid());
EXPECT_EQ(10*i, I.start());
EXPECT_EQ(10*i+5, I.stop());
EXPECT_EQ(i, *I);
++I;
}
EXPECT_FALSE(I.valid());
EXPECT_TRUE(I == map.end());
}
} // namespace

View File

@ -45,6 +45,7 @@ add_llvm_unittest(ADT
ADT/DenseSetTest.cpp
ADT/ilistTest.cpp
ADT/ImmutableSetTest.cpp
ADT/IntervalMapTest.cpp
ADT/SmallBitVectorTest.cpp
ADT/SmallStringTest.cpp
ADT/SmallVectorTest.cpp