Reorder mmt4d shapes:

* Revert https://reviews.llvm.org/D107307 so that both LHS and RHS have
  the same layout with K0 as the innermost dimension.

* Continuing from https://reviews.llvm.org/D107003, move also 'K'
  to the outer side, so that now the inter-tile dimensions as all outer,
  and the intra-tile dimensions are all inner.

Reviewed By: asaadaldien

Differential Revision: https://reviews.llvm.org/D109692
This commit is contained in:
Benoit Jacob 2021-09-13 12:08:54 -07:00 committed by Geoffrey Martin-Noble
parent b8f6c1fd96
commit 340314c4dc
2 changed files with 11 additions and 11 deletions

View File

@ -181,7 +181,7 @@ structured_op: !LinalgStructuredOpConfig
name: rhs
usage: InputOperand
type_var: RhsType
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4, s1, s3, s5)>
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4, s1, s5, s3)>
- !LinalgOperandDefConfig
name: accum
usage: OutputOperand
@ -189,18 +189,18 @@ structured_op: !LinalgStructuredOpConfig
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s4, s2, s5)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d4, d2,
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d2, d3,
d5)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d1, d4, d5,
d3)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d1, d2,
d3)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d1, d2, d4,
d5)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5] -> (d0, d1, d3,
d4)>
iterator_types:
- parallel
- parallel
- parallel
- parallel
- reduction
- parallel
- parallel
- reduction
assignments:
- !ScalarAssign

View File

@ -39,7 +39,7 @@ def quantized_matmul(
@linalg_structured_op
def mmt4d(lhs=TensorDef(TV.LhsType, S.M, S.K, S.M0, S.K0),
rhs=TensorDef(TV.RhsType, S.N, S.K, S.K0, S.N0),
rhs=TensorDef(TV.RhsType, S.N, S.K, S.N0, S.K0),
accum=TensorDef(TV.AccumType, S.M, S.N, S.M0, S.N0,
output=True)):
"""Performs a matrix-matrix-transpose multiplication of two 4D inputs.
@ -52,9 +52,9 @@ def mmt4d(lhs=TensorDef(TV.LhsType, S.M, S.K, S.M0, S.K0),
'0' suffixes below, for instance the LHS matrix shape (M, K, M0, K0) reads
as: MxK tiles, each of shape M0xK0.
"""
domain(D.m, D.n, D.m0, D.n0, D.k, D.k0)
domain(D.m, D.n, D.k, D.m0, D.n0, D.k0)
implements(ContractionOpInterface)
accum[D.m, D.n, D.m0, D.n0] += cast(TV.AccumType, lhs[D.m, D.k, D.m0, D.k0]) * cast(TV.AccumType, rhs[D.n, D.k, D.k0, D.n0])
accum[D.m, D.n, D.m0, D.n0] += cast(TV.AccumType, lhs[D.m, D.k, D.m0, D.k0]) * cast(TV.AccumType, rhs[D.n, D.k, D.n0, D.k0])
@linalg_structured_op
def batch_matmul(