[AArch64] Multiply extended 32-bit ints with `[U|S]MADDL'

During instruction selection, the AArch64 backend can recognise the
following pattern and generate an [U|S]MADDL instruction, i.e. a
multiply of two 32-bit operands with a 64-bit result:

(mul (sext i32), (sext i32))
However, when one of the operands is constant, the sign extension
gets folded into the constant in SelectionDAG::getNode(). This means
that the instruction selection sees this:

(mul (sext i32), i64)
...which doesn't match the pattern. Sign-extension and 64-bit
multiply instructions are generated, which are slower than one 32-bit
multiply.

Add a pattern to match this and generate the correct instruction, for
both signed and unsigned multiplies.

Patch by Chris Diamand!

llvm-svn: 259800
This commit is contained in:
Silviu Baranga 2016-02-04 16:47:09 +00:00
parent e4dff62f64
commit 33b3bd17dd
2 changed files with 92 additions and 0 deletions

View File

@ -528,6 +528,12 @@ def i64imm_32bit : ImmLeaf<i64, [{
return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
}]>;
def s64imm_32bit : ImmLeaf<i64, [{
int64_t Imm64 = static_cast<int64_t>(Imm);
return Imm64 >= std::numeric_limits<int32_t>::min() &&
Imm64 <= std::numeric_limits<int32_t>::max();
}]>;
def trunc_imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
@ -734,6 +740,40 @@ def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
(SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
(UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
(SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
(UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
(SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
(SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
(UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
(SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
(SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
(UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
GPR64:$Ra)),
(SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
(SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
(UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
GPR64:$Ra)),
(SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
} // AddedComplexity = 5
def : MulAccumWAlias<"mul", MADDWrrr>;

View File

@ -88,3 +88,55 @@ entry:
%tmp4 = sub i64 0, %tmp3
ret i64 %tmp4
}
define i64 @t9(i32 %a) nounwind {
entry:
; CHECK-LABEL: t9:
; CHECK: umull {{x[0-9]+}}, {{w[0-9]+}}, {{w[0-9]+}}
%tmp1 = zext i32 %a to i64
%tmp2 = mul i64 %tmp1, 139968
ret i64 %tmp2
}
; Check 64-bit multiplication is used for constants > 32 bits.
define i64 @t10(i32 %a) nounwind {
entry:
; CHECK-LABEL: t10:
; CHECK: mul {{x[0-9]+}}, {{x[0-9]+}}, {{x[0-9]+}}
%tmp1 = sext i32 %a to i64
%tmp2 = mul i64 %tmp1, 2147483650 ; = 2^31 + 2
ret i64 %tmp2
}
; Check the sext_inreg case.
define i64 @t11(i64 %a) nounwind {
entry:
; CHECK-LABEL: t11:
; CHECK: smnegl {{x[0-9]+}}, {{w[0-9]+}}, {{w[0-9]+}}
%tmp1 = trunc i64 %a to i32
%tmp2 = sext i32 %tmp1 to i64
%tmp3 = mul i64 %tmp2, -2395238
%tmp4 = sub i64 0, %tmp3
ret i64 %tmp4
}
define i64 @t12(i64 %a, i64 %b) nounwind {
entry:
; CHECK-LABEL: t12:
; CHECK: smaddl {{x[0-9]+}}, {{w[0-9]+}}, {{w[0-9]+}}, {{x[0-9]+}}
%tmp1 = trunc i64 %a to i32
%tmp2 = sext i32 %tmp1 to i64
%tmp3 = mul i64 %tmp2, -34567890
%tmp4 = add i64 %b, %tmp3
ret i64 %tmp4
}
define i64 @t13(i32 %a, i64 %b) nounwind {
entry:
; CHECK-LABEL: t13:
; CHECK: umsubl {{x[0-9]+}}, {{w[0-9]+}}, {{w[0-9]+}}, {{x[0-9]+}}
%tmp1 = zext i32 %a to i64
%tmp3 = mul i64 %tmp1, 12345678
%tmp4 = sub i64 %tmp3, %b
ret i64 %tmp4
}