Add new RegionInfo pass.

The RegionInfo pass detects single entry single exit regions in a function,
where a region is defined as any subgraph that is connected to the remaining
graph at only two spots.
Furthermore an hierarchical region tree is built.
Use it by calling "opt -regions analyze" or "opt -view-regions".

llvm-svn: 109089
This commit is contained in:
Tobias Grosser 2010-07-22 07:46:31 +00:00
parent 3c31aa3a44
commit 336734aca6
32 changed files with 2707 additions and 0 deletions

View File

@ -120,6 +120,7 @@ perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print " <p>\n" if !
<tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
<tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
<tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
<tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions in a function</td></tr>
<tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
<tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
<tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
@ -771,6 +772,17 @@ perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print " <p>\n" if !
<div class="doc_text">
<p>Pass that checks profiling information for plausibility.</p>
</div>
<div class="doc_subsection">
<a name="regions">-regions: Detect single entry single exit regions in a function</a>
</div>
<div class="doc_text">
<p>
The <code>RegionInfo</code> pass detects single entry single exit regions in a
function, where a region is defined as any subgraph that is connected to the
remaining graph at only two spots. Furthermore, an hierarchical region tree is
built.
</p>
</div>
<!-------------------------------------------------------------------------- -->
<div class="doc_subsection">

View File

@ -154,6 +154,13 @@ namespace llvm {
// print debug info intrinsics in human readable form
FunctionPass *createDbgInfoPrinterPass();
//===--------------------------------------------------------------------===//
//
// createRegionInfoPass - This pass finds all single entry single exit regions
// in a function and builds the region hierarchy.
//
FunctionPass *createRegionInfoPass();
// Print module-level debug info metadata in human-readable form.
ModulePass *createModuleDebugInfoPrinterPass();
}

View File

@ -0,0 +1,601 @@
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Calculate a program structure tree built out of single entry single exit
// regions.
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
// Koehler - 2009".
// The algorithm to calculate these data structures however is completely
// different, as it takes advantage of existing information already available
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
// and in practice hopefully better performing algorithm. The runtime of the
// algorithms described in the papers above are both linear in graph size,
// O(V+E), whereas this algorithm is not, as the dominance frontier information
// itself is not, but in practice runtime seems to be in the order of magnitude
// of dominance tree calculation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_REGION_INFO_H
#define LLVM_ANALYSIS_REGION_INFO_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Support/Allocator.h"
namespace llvm {
class Region;
class RegionInfo;
class raw_ostream;
/// @brief Marker class to iterate over the elements of a Region in flat mode.
///
/// The class is used to either iterate in Flat mode or by not using it to not
/// iterate in Flat mode. During a Flat mode iteration all Regions are entered
/// and the iteration returns every BasicBlock. If the Flat mode is not
/// selected for SubRegions just one RegionNode containing the subregion is
/// returned.
template <class GraphType>
class FlatIt {};
/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
/// Region.
class RegionNode {
// DO NOT IMPLEMENT
RegionNode(const RegionNode &);
// DO NOT IMPLEMENT
const RegionNode &operator=(const RegionNode &);
/// This is the entry basic block that starts this region node. If this is a
/// BasicBlock RegionNode, then entry is just the basic block, that this
/// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
///
/// In the BBtoRegionNode map of the parent of this node, BB will always map
/// to this node no matter which kind of node this one is.
///
/// The node can hold either a Region or a BasicBlock.
/// Use one bit to save, if this RegionNode is a subregion or BasicBlock
/// RegionNode.
PointerIntPair<BasicBlock*, 1, bool> entry;
protected:
/// @brief The parent Region of this RegionNode.
/// @see getParent()
Region* parent;
public:
/// @brief Create a RegionNode.
///
/// @param Parent The parent of this RegionNode.
/// @param Entry The entry BasicBlock of the RegionNode. If this
/// RegionNode represents a BasicBlock, this is the
/// BasicBlock itself. If it represents a subregion, this
/// is the entry BasicBlock of the subregion.
/// @param isSubRegion If this RegionNode represents a SubRegion.
inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
: entry(Entry, isSubRegion), parent(Parent) {}
/// @brief Get the parent Region of this RegionNode.
///
/// The parent Region is the Region this RegionNode belongs to. If for
/// example a BasicBlock is element of two Regions, there exist two
/// RegionNodes for this BasicBlock. Each with the getParent() function
/// pointing to the Region this RegionNode belongs to.
///
/// @return Get the parent Region of this RegionNode.
inline Region* getParent() const { return parent; }
/// @brief Get the entry BasicBlock of this RegionNode.
///
/// If this RegionNode represents a BasicBlock this is just the BasicBlock
/// itself, otherwise we return the entry BasicBlock of the Subregion
///
/// @return The entry BasicBlock of this RegionNode.
inline BasicBlock* getEntry() const { return entry.getPointer(); }
/// @brief Get the content of this RegionNode.
///
/// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
/// check the type of the content with the isSubRegion() function call.
///
/// @return The content of this RegionNode.
template<class T>
inline T* getNodeAs() const;
/// @brief Is this RegionNode a subregion?
///
/// @return True if it contains a subregion. False if it contains a
/// BasicBlock.
inline bool isSubRegion() const {
return entry.getInt();
}
};
/// Print a RegionNode.
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
template<>
inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
return getEntry();
}
template<>
inline Region* RegionNode::getNodeAs<Region>() const {
assert(isSubRegion() && "This is not a subregion RegionNode!");
return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
}
//===----------------------------------------------------------------------===//
/// @brief A single entry single exit Region.
///
/// A Region is a connected subgraph of a control flow graph that has exactly
/// two connections to the remaining graph. It can be used to analyze or
/// optimize parts of the control flow graph.
///
/// A <em> simple Region </em> is connected to the remaing graph by just two
/// edges. One edge entering the Region and another one leaving the Region.
///
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
/// transform into a simple Region. The transformation is done by adding
/// BasicBlocks that merge several entry or exit edges so that after the merge
/// just one entry and one exit edge exists.
///
/// The \e Entry of a Region is the first BasicBlock that is passed after
/// entering the Region. It is an element of the Region. The entry BasicBlock
/// dominates all BasicBlocks in the Region.
///
/// The \e Exit of a Region is the first BasicBlock that is passed after
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
/// postdominates all BasicBlocks in the Region.
///
/// A <em> canonical Region </em> cannot be constructed by combining smaller
/// Regions.
///
/// Region A is the \e parent of Region B, if B is completely contained in A.
///
/// Two canonical Regions either do not intersect at all or one is
/// the parent of the other.
///
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
/// Regions in the control flow graph and E is the \e parent relation of these
/// Regions.
///
/// Example:
///
/// \verbatim
/// A simple control flow graph, that contains two regions.
///
/// 1
/// / |
/// 2 |
/// / \ 3
/// 4 5 |
/// | | |
/// 6 7 8
/// \ | /
/// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
/// 9 Region B: 2 -> 9 {2,4,5,6,7}
/// \endverbatim
///
/// You can obtain more examples by either calling
///
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
/// or
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
///
/// on any LLVM file you are interested in.
///
/// The first call returns a textual representation of the program structure
/// tree, the second one creates a graphical representation using graphviz.
class Region : public RegionNode {
friend class RegionInfo;
// DO NOT IMPLEMENT
Region(const Region &);
// DO NOT IMPLEMENT
const Region &operator=(const Region &);
// Information necessary to manage this Region.
RegionInfo* RI;
DominatorTree *DT;
// The exit BasicBlock of this region.
// (The entry BasicBlock is part of RegionNode)
BasicBlock *exit;
typedef std::vector<Region*> RegionSet;
// The subregions of this region.
RegionSet children;
typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
// Save the BasicBlock RegionNodes that are element of this Region.
mutable BBNodeMapT BBNodeMap;
/// verifyBBInRegion - Check if a BB is in this Region. This check also works
/// if the region is incorrectly built. (EXPENSIVE!)
void verifyBBInRegion(BasicBlock* BB) const;
/// verifyWalk - Walk over all the BBs of the region starting from BB and
/// verify that all reachable basic blocks are elements of the region.
/// (EXPENSIVE!)
void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
/// verifyRegionNest - Verify if the region and its children are valid
/// regions (EXPENSIVE!)
void verifyRegionNest() const;
public:
/// @brief Create a new region.
///
/// @param Entry The entry basic block of the region.
/// @param Exit The exit basic block of the region.
/// @param RI The region info object that is managing this region.
/// @param DT The dominator tree of the current function.
/// @param Parent The surrounding region or NULL if this is a top level
/// region.
Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
DominatorTree *DT, Region *Parent = 0);
/// Delete the Region and all its subregions.
~Region();
/// @brief Get the entry BasicBlock of the Region.
/// @return The entry BasicBlock of the region.
BasicBlock *getEntry() const { return RegionNode::getEntry(); }
/// @brief Get the exit BasicBlock of the Region.
/// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
/// Region.
BasicBlock *getExit() const { return exit; }
/// @brief Get the parent of the Region.
/// @return The parent of the Region or NULL if this is a top level
/// Region.
Region *getParent() const { return RegionNode::getParent(); }
/// @brief Get the RegionNode representing the current Region.
/// @return The RegionNode representing the current Region.
RegionNode* getNode() const {
return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
}
/// @brief Get the nesting level of this Region.
///
/// An toplevel Region has depth 0.
///
/// @return The depth of the region.
unsigned getDepth() const;
/// @brief Is this a simple region?
///
/// A region is simple if it has exactly one exit and one entry edge.
///
/// @return True if the Region is simple.
bool isSimple() const;
/// @brief Returns the name of the Region.
/// @return The Name of the Region.
std::string getNameStr() const {
std::string exitName;
if (getExit())
exitName = getExit()->getNameStr();
else
exitName = "<Function Return>";
return getEntry()->getNameStr() + " => " + exitName;
}
/// @brief Return the RegionInfo object, that belongs to this Region.
RegionInfo *getRegionInfo() const {
return RI;
}
/// @brief Print the region.
///
/// @param OS The output stream the Region is printed to.
/// @param printTree Print also the tree of subregions.
/// @param level The indentation level used for printing.
void print(raw_ostream& OS, bool printTree = true, unsigned level = 0) const;
/// @brief Print the region to stderr.
void dump() const;
/// @brief Check if the region contains a BasicBlock.
///
/// @param BB The BasicBlock that might be contained in this Region.
/// @return True if the block is contained in the region otherwise false.
bool contains(const BasicBlock *BB) const;
/// @brief Check if the region contains another region.
///
/// @param SubRegion The region that might be contained in this Region.
/// @return True if SubRegion is contained in the region otherwise false.
bool contains(const Region *SubRegion) const {
// Toplevel Region.
if (!getExit())
return true;
return contains(SubRegion->getEntry())
&& (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
}
/// @brief Check if the region contains an Instruction.
///
/// @param Inst The Instruction that might be contained in this region.
/// @return True if the Instruction is contained in the region otherwise false.
bool contains(const Instruction *Inst) const {
return contains(Inst->getParent());
}
/// @brief Get the subregion that starts at a BasicBlock
///
/// @param BB The BasicBlock the subregion should start.
/// @return The Subregion if available, otherwise NULL.
Region* getSubRegionNode(BasicBlock *BB) const;
/// @brief Get the RegionNode for a BasicBlock
///
/// @param BB The BasicBlock at which the RegionNode should start.
/// @return If available, the RegionNode that represents the subregion
/// starting at BB. If no subregion starts at BB, the RegionNode
/// representing BB.
RegionNode* getNode(BasicBlock *BB) const;
/// @brief Get the BasicBlock RegionNode for a BasicBlock
///
/// @param BB The BasicBlock for which the RegionNode is requested.
/// @return The RegionNode representing the BB.
RegionNode* getBBNode(BasicBlock *BB) const;
/// @brief Add a new subregion to this Region.
///
/// @param SubRegion The new subregion that will be added.
void addSubRegion(Region *SubRegion);
/// @brief Remove a subregion from this Region.
///
/// The subregion is not deleted, as it will probably be inserted into another
/// region.
/// @param SubRegion The SubRegion that will be removed.
Region *removeSubRegion(Region *SubRegion);
/// @brief Move all direct child nodes of this Region to another Region.
///
/// @param To The Region the child nodes will be transfered to.
void transferChildrenTo(Region *To);
/// @brief Verify if the region is a correct region.
///
/// Check if this is a correctly build Region. This is an expensive check, as
/// the complete CFG of the Region will be walked.
void verifyRegion() const;
/// @brief Clear the cache for BB RegionNodes.
///
/// After calling this function the BasicBlock RegionNodes will be stored at
/// different memory locations. RegionNodes obtained before this function is
/// called are therefore not comparable to RegionNodes abtained afterwords.
void clearNodeCache();
/// @name Subregion Iterators
///
/// These iterators iterator over all subregions of this Region.
//@{
typedef RegionSet::iterator iterator;
typedef RegionSet::const_iterator const_iterator;
iterator begin() { return children.begin(); }
iterator end() { return children.end(); }
const_iterator begin() const { return children.begin(); }
const_iterator end() const { return children.end(); }
//@}
/// @name BasicBlock Iterators
///
/// These iterators iterate over all BasicBlock RegionNodes that are
/// contained in this Region. The iterator also iterates over BasicBlocks
/// that are elements of a subregion of this Region. It is therefore called a
/// flat iterator.
//@{
typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
GraphTraits<FlatIt<RegionNode*> > > block_iterator;
typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
false, GraphTraits<FlatIt<const RegionNode*> > >
const_block_iterator;
block_iterator block_begin();
block_iterator block_end();
const_block_iterator block_begin() const;
const_block_iterator block_end() const;
//@}
/// @name Element Iterators
///
/// These iterators iterate over all BasicBlock and subregion RegionNodes that
/// are direct children of this Region. It does not iterate over any
/// RegionNodes that are also element of a subregion of this Region.
//@{
typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
GraphTraits<RegionNode*> > element_iterator;
typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
false, GraphTraits<const RegionNode*> >
const_element_iterator;
element_iterator element_begin();
element_iterator element_end();
const_element_iterator element_begin() const;
const_element_iterator element_end() const;
//@}
};
//===----------------------------------------------------------------------===//
/// @brief Analysis that detects all canonical Regions.
///
/// The RegionInfo pass detects all canonical regions in a function. The Regions
/// are connected using the parent relation. This builds a Program Structure
/// Tree.
class RegionInfo : public FunctionPass {
typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
typedef SmallPtrSet<Region*, 4> RegionSet;
// DO NOT IMPLEMENT
RegionInfo(const RegionInfo &);
// DO NOT IMPLEMENT
const RegionInfo &operator=(const RegionInfo &);
DominatorTree *DT;
PostDominatorTree *PDT;
DominanceFrontier *DF;
/// The top level region.
Region *TopLevelRegion;
/// Map every BB to the smallest region, that contains BB.
BBtoRegionMap BBtoRegion;
// isCommonDomFrontier - Returns true if BB is in the dominance frontier of
// entry, because it was inherited from exit. In the other case there is an
// edge going from entry to BB without passing exit.
bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
BasicBlock* exit) const;
// isRegion - Check if entry and exit surround a valid region, based on
// dominance tree and dominance frontier.
bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
// insertShortCut - Saves a shortcut pointing from entry to exit.
// This function may extend this shortcut if possible.
void insertShortCut(BasicBlock* entry, BasicBlock* exit,
BBtoBBMap* ShortCut) const;
// getNextPostDom - Returns the next BB that postdominates N, while skipping
// all post dominators that cannot finish a canonical region.
DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
// isTrivialRegion - A region is trivial, if it contains only one BB.
bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
// createRegion - Creates a single entry single exit region.
Region *createRegion(BasicBlock *entry, BasicBlock *exit);
// findRegionsWithEntry - Detect all regions starting with bb 'entry'.
void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
// scanForRegions - Detects regions in F.
void scanForRegions(Function &F, BBtoBBMap *ShortCut);
// getTopMostParent - Get the top most parent with the same entry block.
Region *getTopMostParent(Region *region);
// buildRegionsTree - build the region hierarchy after all region detected.
void buildRegionsTree(DomTreeNode *N, Region *region);
// Calculate - detecte all regions in function and build the region tree.
void Calculate(Function& F);
void releaseMemory();
// updateStatistics - Update statistic about created regions.
void updateStatistics(Region *R);
// isSimple - Check if a region is a simple region with exactly one entry
// edge and exactly one exit edge.
bool isSimple(Region* R) const;
public:
static char ID;
explicit RegionInfo();
~RegionInfo();
/// @name FunctionPass interface
//@{
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void print(raw_ostream &OS, const Module *) const;
virtual void verifyAnalysis() const;
//@}
/// @brief Get the smallest region that contains a BasicBlock.
///
/// @param BB The basic block.
/// @return The smallest region, that contains BB or NULL, if there is no
/// region containing BB.
Region *getRegionFor(BasicBlock *BB) const;
/// @brief A shortcut for getRegionFor().
///
/// @param BB The basic block.
/// @return The smallest region, that contains BB or NULL, if there is no
/// region containing BB.
Region *operator[](BasicBlock *BB) const;
/// @brief Find the smallest region that contains two regions.
///
/// @param A The first region.
/// @param B The second region.
/// @return The smallest region containing A and B.
Region *getCommonRegion(Region* A, Region *B) const;
/// @brief Find the smallest region that contains two basic blocks.
///
/// @param A The first basic block.
/// @param B The second basic block.
/// @return The smallest region that contains A and B.
Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
return getCommonRegion(getRegionFor(A), getRegionFor(B));
}
/// @brief Find the smallest region that contains a set of regions.
///
/// @param Regions A vector of regions.
/// @return The smallest region that contains all regions in Regions.
Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
/// @brief Find the smallest region that contains a set of basic blocks.
///
/// @param BBs A vector of basic blocks.
/// @return The smallest region that contains all basic blocks in BBS.
Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
Region *getTopLevelRegion() const {
return TopLevelRegion;
}
/// @brief Clear the Node Cache for all Regions.
///
/// @see Region::clearNodeCache()
void clearNodeCache() {
if (TopLevelRegion)
TopLevelRegion->clearNodeCache();
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
if (Node.isSubRegion())
return OS << Node.getNodeAs<Region>()->getNameStr();
else
return OS << Node.getNodeAs<BasicBlock>()->getNameStr();
}
} // End llvm namespace
#endif

View File

@ -0,0 +1,342 @@
//===- RegionIterator.h - Iterators to iteratate over Regions ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file defines the iterators to iterate over the elements of a Region.
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_REGION_ITERATOR_H
#define LLVM_ANALYSIS_REGION_ITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// @brief Hierachical RegionNode successor iterator.
///
/// This iterator iterates over all successors of a RegionNode.
///
/// For a BasicBlock RegionNode it skips all BasicBlocks that are not part of
/// the parent Region. Furthermore for BasicBlocks that start a subregion, a
/// RegionNode representing the subregion is returned.
///
/// For a subregion RegionNode there is just one successor. The RegionNode
/// representing the exit of the subregion.
template<class NodeType>
class RNSuccIterator : public std::iterator<std::forward_iterator_tag,
NodeType, ptrdiff_t>
{
typedef std::iterator<std::forward_iterator_tag, NodeType, ptrdiff_t> super;
// The iterator works in two modes, bb mode or region mode.
enum ItMode{
// In BB mode it returns all successors of this BasicBlock as its
// successors.
ItBB,
// In region mode there is only one successor, thats the regionnode mapping
// to the exit block of the regionnode
ItRgBegin, // At the beginning of the regionnode successor.
ItRgEnd // At the end of the regionnode successor.
};
// Use two bit to represent the mode iterator.
PointerIntPair<NodeType*, 2, enum ItMode> Node;
// The block successor iterator.
succ_iterator BItor;
// advanceRegionSucc - A region node has only one successor. It reaches end
// once we advance it.
void advanceRegionSucc() {
assert(Node.getInt() == ItRgBegin && "Cannot advance region successor!");
Node.setInt(ItRgEnd);
}
NodeType* getNode() const{ return Node.getPointer(); }
// isRegionMode - Is the current iterator in region mode?
bool isRegionMode() const { return Node.getInt() != ItBB; }
// Get the immediate successor. This function may return a Basic Block
// RegionNode or a subregion RegionNode.
RegionNode* getISucc(BasicBlock* BB) const {
RegionNode *succ;
succ = getNode()->getParent()->getNode(BB);
assert(succ && "BB not in Region or entered subregion!");
return succ;
}
// getRegionSucc - Return the successor basic block of a SubRegion RegionNode.
inline BasicBlock* getRegionSucc() const {
assert(Node.getInt() == ItRgBegin && "Cannot get the region successor!");
return getNode()->template getNodeAs<Region>()->getExit();
}
// isExit - Is this the exit BB of the Region?
inline bool isExit(BasicBlock* BB) const {
return getNode()->getParent()->getExit() == BB;
}
public:
typedef RNSuccIterator<NodeType> Self;
typedef typename super::pointer pointer;
/// @brief Create begin iterator of a RegionNode.
inline RNSuccIterator(NodeType* node)
: Node(node, node->isSubRegion() ? ItRgBegin : ItBB),
BItor(succ_begin(node->getEntry())) {
// Skip the exit block
if (!isRegionMode())
while (succ_end(node->getEntry()) != BItor && isExit(*BItor))
++BItor;
if (isRegionMode() && isExit(getRegionSucc()))
advanceRegionSucc();
}
/// @brief Create an end iterator.
inline RNSuccIterator(NodeType* node, bool)
: Node(node, node->isSubRegion() ? ItRgEnd : ItBB),
BItor(succ_end(node->getEntry())) {}
inline bool operator==(const Self& x) const {
assert(isRegionMode() == x.isRegionMode() && "Broken iterator!");
if (isRegionMode())
return Node.getInt() == x.Node.getInt();
else
return BItor == x.BItor;
}
inline bool operator!=(const Self& x) const { return !operator==(x); }
inline pointer operator*() const {
BasicBlock* BB = isRegionMode() ? getRegionSucc() : *BItor;
assert(!isExit(BB) && "Iterator out of range!");
return getISucc(BB);
}
inline Self& operator++() {
if(isRegionMode()) {
// The Region only has 1 successor.
advanceRegionSucc();
} else {
// Skip the exit.
do
++BItor;
while (BItor != succ_end(getNode()->getEntry())
&& isExit(*BItor));
}
return *this;
}
inline Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
inline const Self &operator=(const Self &I) {
if (this != &I) {
assert(getNode()->getParent() == I.getNode()->getParent()
&& "Cannot assign iterators of two different regions!");
Node = I.Node;
BItor = I.BItor;
}
return *this;
}
};
//===----------------------------------------------------------------------===//
/// @brief Flat RegionNode iterator.
///
/// The Flat Region iterator will iterate over all BasicBlock RegionNodes that
/// are contained in the Region and its subregions. This is close to a virtual
/// control flow graph of the Region.
template<class NodeType>
class RNSuccIterator<FlatIt<NodeType> >
: public std::iterator<std::forward_iterator_tag, NodeType, ptrdiff_t>
{
typedef std::iterator<std::forward_iterator_tag, NodeType, ptrdiff_t> super;
NodeType* Node;
succ_iterator Itor;
public:
typedef RNSuccIterator<FlatIt<NodeType> > Self;
typedef typename super::pointer pointer;
/// @brief Create the iterator from a RegionNode.
///
/// Note that the incoming node must be a bb node, otherwise it will trigger
/// an assertion when we try to get a BasicBlock.
inline RNSuccIterator(NodeType* node) : Node(node),
Itor(succ_begin(node->getEntry())) {
assert(!Node->isSubRegion()
&& "Subregion node not allowed in flat iterating mode!");
assert(Node->getParent() && "A BB node must have a parent!");
// Skip the exit block of the iterating region.
while (succ_end(Node->getEntry()) != Itor
&& Node->getParent()->getExit() == *Itor)
++Itor;
}
/// @brief Create an end iterator
inline RNSuccIterator(NodeType* node, bool) : Node(node),
Itor(succ_end(node->getEntry())) {
assert(!Node->isSubRegion()
&& "Subregion node not allowed in flat iterating mode!");
}
inline bool operator==(const Self& x) const {
assert(Node->getParent() == x.Node->getParent()
&& "Cannot compare iterators of different regions!");
return Itor == x.Itor && Node == x.Node;
}
inline bool operator!=(const Self& x) const { return !operator==(x); }
inline pointer operator*() const {
BasicBlock* BB = *Itor;
// Get the iterating region.
Region* Parent = Node->getParent();
// The only case that the successor reaches out of the region is it reaches
// the exit of the region.
assert(Parent->getExit() != BB && "iterator out of range!");
return Parent->getBBNode(BB);
}
inline Self& operator++() {
// Skip the exit block of the iterating region.
do
++Itor;
while (Itor != succ_end(Node->getEntry())
&& Node->getParent()->getExit() == *Itor);
return *this;
}
inline Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
inline const Self &operator=(const Self &I) {
if (this != &I) {
assert(Node->getParent() == I.Node->getParent()
&& "Cannot assign iterators to two different regions!");
Node = I.Node;
Itor = I.Itor;
}
return *this;
}
};
template<class NodeType>
inline RNSuccIterator<NodeType> succ_begin(NodeType* Node) {
return RNSuccIterator<NodeType>(Node);
}
template<class NodeType>
inline RNSuccIterator<NodeType> succ_end(NodeType* Node) {
return RNSuccIterator<NodeType>(Node, true);
}
//===--------------------------------------------------------------------===//
// RegionNode GraphTraits specialization so the bbs in the region can be
// iterate by generic graph iterators.
//
// NodeT can either be region node or const region node, otherwise child_begin
// and child_end fail.
#define RegionNodeGraphTraits(NodeT) \
template<> struct GraphTraits<NodeT*> { \
typedef NodeT NodeType; \
typedef RNSuccIterator<NodeType> ChildIteratorType; \
static NodeType *getEntryNode(NodeType* N) { return N; } \
static inline ChildIteratorType child_begin(NodeType *N) { \
return RNSuccIterator<NodeType>(N); \
} \
static inline ChildIteratorType child_end(NodeType *N) { \
return RNSuccIterator<NodeType>(N, true); \
} \
}; \
template<> struct GraphTraits<FlatIt<NodeT*> > { \
typedef NodeT NodeType; \
typedef RNSuccIterator<FlatIt<NodeT> > ChildIteratorType; \
static NodeType *getEntryNode(NodeType* N) { return N; } \
static inline ChildIteratorType child_begin(NodeType *N) { \
return RNSuccIterator<FlatIt<NodeType> >(N); \
} \
static inline ChildIteratorType child_end(NodeType *N) { \
return RNSuccIterator<FlatIt<NodeType> >(N, true); \
} \
}
#define RegionGraphTraits(RegionT, NodeT) \
template<> struct GraphTraits<RegionT*> \
: public GraphTraits<NodeT*> { \
typedef df_iterator<NodeType*> nodes_iterator; \
static NodeType *getEntryNode(RegionT* R) { \
return R->getNode(R->getEntry()); \
} \
static nodes_iterator nodes_begin(RegionT* R) { \
return nodes_iterator::begin(getEntryNode(R)); \
} \
static nodes_iterator nodes_end(RegionT* R) { \
return nodes_iterator::end(getEntryNode(R)); \
} \
}; \
template<> struct GraphTraits<FlatIt<RegionT*> > \
: public GraphTraits<FlatIt<NodeT*> > { \
typedef df_iterator<NodeType*, SmallPtrSet<NodeType*, 8>, false, \
GraphTraits<FlatIt<NodeType*> > > nodes_iterator; \
static NodeType *getEntryNode(RegionT* R) { \
return R->getBBNode(R->getEntry()); \
} \
static nodes_iterator nodes_begin(RegionT* R) { \
return nodes_iterator::begin(getEntryNode(R)); \
} \
static nodes_iterator nodes_end(RegionT* R) { \
return nodes_iterator::end(getEntryNode(R)); \
} \
}
RegionNodeGraphTraits(RegionNode);
RegionNodeGraphTraits(const RegionNode);
RegionGraphTraits(Region, RegionNode);
RegionGraphTraits(const Region, const RegionNode);
template <> struct GraphTraits<RegionInfo*>
: public GraphTraits<FlatIt<RegionNode*> > {
typedef df_iterator<NodeType*, SmallPtrSet<NodeType*, 8>, false,
GraphTraits<FlatIt<NodeType*> > > nodes_iterator;
static NodeType *getEntryNode(RegionInfo *RI) {
return GraphTraits<FlatIt<Region*> >::getEntryNode(RI->getTopLevelRegion());
}
static nodes_iterator nodes_begin(RegionInfo* RI) {
return nodes_iterator::begin(getEntryNode(RI));
}
static nodes_iterator nodes_end(RegionInfo *RI) {
return nodes_iterator::end(getEntryNode(RI));
}
};
} // End namespace llvm
#endif

View File

@ -0,0 +1,26 @@
//===-- RegionPrinter.h - Region printer external interface -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines external functions that can be called to explicitly
// instantiate the region printer.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_REGIONPRINTER_H
#define LLVM_ANALYSIS_REGIONPRINTER_H
namespace llvm {
class FunctionPass;
FunctionPass *createRegionViewerPass();
FunctionPass *createRegionOnlyViewerPass();
FunctionPass *createRegionPrinterPass();
FunctionPass *createRegionOnlyPrinterPass();
} // End llvm namespace
#endif

View File

@ -22,6 +22,7 @@
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PointerTracking.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/RegionPrinter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/Lint.h"
#include "llvm/Assembly/PrintModulePass.h"
@ -106,6 +107,11 @@ namespace {
(void) llvm::createPostDomOnlyViewerPass();
(void) llvm::createPostDomViewerPass();
(void) llvm::createReassociatePass();
(void) llvm::createRegionInfoPass();
(void) llvm::createRegionOnlyPrinterPass();
(void) llvm::createRegionOnlyViewerPass();
(void) llvm::createRegionPrinterPass();
(void) llvm::createRegionViewerPass();
(void) llvm::createSCCPPass();
(void) llvm::createScalarReplAggregatesPass();
(void) llvm::createSimplifyLibCallsPass();

View File

@ -271,6 +271,12 @@ public:
O << "[" << Attrs << "]";
O << ";\n";
}
/// getOStream - Get the raw output stream into the graph file. Useful to
/// write fancy things using addCustomGraphFeatures().
raw_ostream &getOStream() {
return O;
}
};
template<typename GraphType>

View File

@ -38,6 +38,8 @@ add_llvm_library(LLVMAnalysis
ProfileInfoLoader.cpp
ProfileInfoLoaderPass.cpp
ProfileVerifierPass.cpp
RegionInfo.cpp
RegionPrinter.cpp
ScalarEvolution.cpp
ScalarEvolutionAliasAnalysis.cpp
ScalarEvolutionExpander.cpp

View File

@ -0,0 +1,637 @@
//===- RegionInfo.cpp - SESE region detection analysis --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Detects single entry single exit regions in the control flow graph.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "region"
#include "llvm/Support/Debug.h"
#include <set>
#include <algorithm>
using namespace llvm;
// Always verify if expensive checking is enabled.
#ifdef XDEBUG
bool VerifyRegionInfo = true;
#else
bool VerifyRegionInfo = false;
#endif
static cl::opt<bool,true>
VerifyRegionInfoX("verify-region-info", cl::location(VerifyRegionInfo),
cl::desc("Verify region info (time consuming)"));
STATISTIC(numRegions, "The # of regions");
STATISTIC(numSimpleRegions, "The # of simple regions");
//===----------------------------------------------------------------------===//
/// PrintStyle - Print region in difference ways.
enum PrintStyle { PrintNone, PrintBB, PrintRN };
cl::opt<enum PrintStyle> printStyle("print-region-style", cl::Hidden,
cl::desc("style of printing regions"),
cl::values(
clEnumValN(PrintNone, "none", "print no details"),
clEnumValN(PrintBB, "bb", "print regions in detail with block_iterator"),
clEnumValN(PrintRN, "rn", "print regions in detail with element_iterator"),
clEnumValEnd));
//===----------------------------------------------------------------------===//
/// Region Implementation
Region::Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RInfo,
DominatorTree *dt, Region *Parent)
: RegionNode(Parent, Entry, 1), RI(RInfo), DT(dt), exit(Exit) {}
Region::~Region() {
// Only clean the cache for this Region. Caches of child Regions will be
// cleaned when the child Regions are deleted.
BBNodeMap.clear();
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
}
bool Region::contains(const BasicBlock *B) const {
BasicBlock *BB = const_cast<BasicBlock*>(B);
assert(DT->getNode(BB) && "BB not part of the dominance tree");
BasicBlock *entry = getEntry(), *exit = getExit();
// Toplevel region.
if (!exit)
return true;
return (DT->dominates(entry, BB)
&& !(DT->dominates(exit, BB) && DT->dominates(entry, exit)));
}
bool Region::isSimple() const {
bool isSimple = true;
bool found = false;
BasicBlock *entry = getEntry(), *exit = getExit();
// TopLevelRegion
if (!exit)
return false;
for (pred_iterator PI = pred_begin(entry), PE = pred_end(entry); PI != PE;
++PI)
if (!contains(*PI)) {
if (found) {
isSimple = false;
break;
}
found = true;
}
found = false;
for (pred_iterator PI = pred_begin(exit), PE = pred_end(exit); PI != PE;
++PI)
if (contains(*PI)) {
if (found) {
isSimple = false;
break;
}
found = true;
}
return isSimple;
}
void Region::verifyBBInRegion(BasicBlock *BB) const {
if (!contains(BB))
llvm_unreachable("Broken region found!");
BasicBlock *entry = getEntry(), *exit = getExit();
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (!contains(*SI) && exit != *SI)
llvm_unreachable("Broken region found!");
if (entry != BB)
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI)
if (!contains(*SI))
llvm_unreachable("Broken region found!");
}
void Region::verifyWalk(BasicBlock *BB, std::set<BasicBlock*> *visited) const {
BasicBlock *exit = getExit();
visited->insert(BB);
verifyBBInRegion(BB);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (*SI != exit && visited->find(*SI) == visited->end())
verifyWalk(*SI, visited);
}
void Region::verifyRegion() const {
// Only do verification when user wants to, otherwise this expensive
// check will be invoked by PassManager.
if (!VerifyRegionInfo) return;
std::set<BasicBlock*> visited;
verifyWalk(getEntry(), &visited);
}
void Region::verifyRegionNest() const {
for (Region::const_iterator RI = begin(), RE = end(); RI != RE; ++RI)
(*RI)->verifyRegionNest();
verifyRegion();
}
Region::block_iterator Region::block_begin() {
return GraphTraits<FlatIt<Region*> >::nodes_begin(this);
}
Region::block_iterator Region::block_end() {
return GraphTraits<FlatIt<Region*> >::nodes_end(this);
}
Region::const_block_iterator Region::block_begin() const {
return GraphTraits<FlatIt<const Region*> >::nodes_begin(this);
}
Region::const_block_iterator Region::block_end() const {
return GraphTraits<FlatIt<const Region*> >::nodes_end(this);
}
Region::element_iterator Region::element_begin() {
return GraphTraits<Region*>::nodes_begin(this);
}
Region::element_iterator Region::element_end() {
return GraphTraits<Region*>::nodes_end(this);
}
Region::const_element_iterator Region::element_begin() const {
return GraphTraits<const Region*>::nodes_begin(this);
}
Region::const_element_iterator Region::element_end() const {
return GraphTraits<const Region*>::nodes_end(this);
}
Region* Region::getSubRegionNode(BasicBlock *BB) const {
Region *R = RI->getRegionFor(BB);
if (!R || R == this)
return 0;
// If we pass the BB out of this region, that means our code is broken.
assert(contains(R) && "BB not in current region!");
while (contains(R->getParent()) && R->getParent() != this)
R = R->getParent();
if (R->getEntry() != BB)
return 0;
return R;
}
RegionNode* Region::getBBNode(BasicBlock *BB) const {
assert(contains(BB) && "Can get BB node out of this region!");
BBNodeMapT::const_iterator at = BBNodeMap.find(BB);
if (at != BBNodeMap.end())
return at->second;
RegionNode *NewNode = new RegionNode(const_cast<Region*>(this), BB);
BBNodeMap.insert(std::make_pair(BB, NewNode));
return NewNode;
}
RegionNode* Region::getNode(BasicBlock *BB) const {
assert(contains(BB) && "Can get BB node out of this region!");
if (Region* Child = getSubRegionNode(BB))
return Child->getNode();
return getBBNode(BB);
}
void Region::transferChildrenTo(Region *To) {
for (iterator I = begin(), E = end(); I != E; ++I) {
(*I)->parent = To;
To->children.push_back(*I);
}
children.clear();
}
void Region::addSubRegion(Region *SubRegion) {
assert(SubRegion->parent == 0 && "SubRegion already has a parent!");
SubRegion->parent = this;
// Set up the region node.
assert(std::find(children.begin(), children.end(), SubRegion) == children.end()
&& "Node already exist!");
children.push_back(SubRegion);
}
Region *Region::removeSubRegion(Region *Child) {
assert(Child->parent == this && "Child is not a child of this region!");
Child->parent = 0;
RegionSet::iterator I = std::find(children.begin(), children.end(), Child);
assert(I != children.end() && "Region does not exit. Unable to remove.");
children.erase(children.begin()+(I-begin()));
return Child;
}
unsigned Region::getDepth() const {
unsigned Depth = 0;
for (Region *R = parent; R != 0; R = R->parent)
++Depth;
return Depth;
}
void Region::print(raw_ostream &OS, bool print_tree, unsigned level) const {
if (print_tree)
OS.indent(level*2) << "[" << level << "] " << getNameStr();
else
OS.indent(level*2) << getNameStr();
OS << "\n";
if (printStyle != PrintNone) {
OS.indent(level*2) << "{\n";
OS.indent(level*2 + 2);
if (printStyle == PrintBB) {
for (const_block_iterator I = block_begin(), E = block_end(); I!=E; ++I)
OS << **I << ", "; // TODO: remove the last ","
} else if (printStyle == PrintRN) {
for (const_element_iterator I = element_begin(), E = element_end(); I!=E; ++I)
OS << **I << ", "; // TODO: remove the last ",
}
OS << "\n";
}
if (print_tree)
for (const_iterator RI = begin(), RE = end(); RI != RE; ++RI)
(*RI)->print(OS, print_tree, level+1);
if (printStyle != PrintNone)
OS.indent(level*2) << "} \n";
}
void Region::dump() const {
print(dbgs(), true, getDepth());
}
void Region::clearNodeCache() {
BBNodeMap.clear();
for (Region::iterator RI = begin(), RE = end(); RI != RE; ++RI)
(*RI)->clearNodeCache();
}
//===----------------------------------------------------------------------===//
// RegionInfo implementation
//
bool RegionInfo::isCommonDomFrontier(BasicBlock *BB, BasicBlock *entry,
BasicBlock *exit) const {
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (DT->dominates(entry, *PI) && !DT->dominates(exit, *PI))
return false;
return true;
}
bool RegionInfo::isRegion(BasicBlock *entry, BasicBlock *exit) const {
assert(entry && exit && "entry and exit must not be null!");
typedef DominanceFrontier::DomSetType DST;
DST *entrySuccs = &(*DF->find(entry)).second;
// Exit is the header of a loop that contains the entry. In this case,
// the dominance frontier must only contain the exit.
if (!DT->dominates(entry, exit)) {
for (DST::iterator SI = entrySuccs->begin(), SE = entrySuccs->end();
SI != SE; ++SI)
if (*SI != exit && *SI != entry)
return false;
return true;
}
DST *exitSuccs = &(*DF->find(exit)).second;
// Do not allow edges leaving the region.
for (DST::iterator SI = entrySuccs->begin(), SE = entrySuccs->end();
SI != SE; ++SI) {
if (*SI == exit || *SI == entry)
continue;
if (exitSuccs->find(*SI) == exitSuccs->end())
return false;
if (!isCommonDomFrontier(*SI, entry, exit))
return false;
}
// Do not allow edges pointing into the region.
for (DST::iterator SI = exitSuccs->begin(), SE = exitSuccs->end();
SI != SE; ++SI)
if (DT->dominates(entry, *SI) && *SI != entry && *SI != exit)
return false;
return true;
}
void RegionInfo::insertShortCut(BasicBlock *entry, BasicBlock *exit,
BBtoBBMap *ShortCut) const {
assert(entry && exit && "entry and exit must not be null!");
BBtoBBMap::iterator e = ShortCut->find(exit);
if (e == ShortCut->end())
// No further region at exit available.
(*ShortCut)[entry] = exit;
else {
// We found a region e that starts at exit. Therefore (entry, e->second)
// is also a region, that is larger than (entry, exit). Insert the
// larger one.
BasicBlock *BB = e->second;
(*ShortCut)[entry] = BB;
}
}
DomTreeNode* RegionInfo::getNextPostDom(DomTreeNode* N,
BBtoBBMap *ShortCut) const {
BBtoBBMap::iterator e = ShortCut->find(N->getBlock());
if (e == ShortCut->end())
return N->getIDom();
return PDT->getNode(e->second)->getIDom();
}
bool RegionInfo::isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const {
assert(entry && exit && "entry and exit must not be null!");
unsigned num_successors = succ_end(entry) - succ_begin(entry);
if (num_successors <= 1 && exit == *(succ_begin(entry)))
return true;
return false;
}
void RegionInfo::updateStatistics(Region *R) {
++numRegions;
// TODO: Slow. Should only be enabled if -stats is used.
if (R->isSimple()) ++numSimpleRegions;
}
Region *RegionInfo::createRegion(BasicBlock *entry, BasicBlock *exit) {
assert(entry && exit && "entry and exit must not be null!");
if (isTrivialRegion(entry, exit))
return 0;
Region *region = new Region(entry, exit, this, DT);
BBtoRegion.insert(std::make_pair(entry, region));
#ifdef XDEBUG
region->verifyRegion();
#else
DEBUG(region->verifyRegion());
#endif
updateStatistics(region);
return region;
}
void RegionInfo::findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut) {
assert(entry);
DomTreeNode *N = PDT->getNode(entry);
if (!N)
return;
Region *lastRegion= 0;
BasicBlock *lastExit = entry;
// As only a BasicBlock that postdominates entry can finish a region, walk the
// post dominance tree upwards.
while ((N = getNextPostDom(N, ShortCut))) {
BasicBlock *exit = N->getBlock();
if (!exit)
break;
if (isRegion(entry, exit)) {
Region *newRegion = createRegion(entry, exit);
if (lastRegion)
newRegion->addSubRegion(lastRegion);
lastRegion = newRegion;
lastExit = exit;
}
// This can never be a region, so stop the search.
if (!DT->dominates(entry, exit))
break;
}
// Tried to create regions from entry to lastExit. Next time take a
// shortcut from entry to lastExit.
if (lastExit != entry)
insertShortCut(entry, lastExit, ShortCut);
}
void RegionInfo::scanForRegions(Function &F, BBtoBBMap *ShortCut) {
BasicBlock *entry = &(F.getEntryBlock());
DomTreeNode *N = DT->getNode(entry);
// Iterate over the dominance tree in post order to start with the small
// regions from the bottom of the dominance tree. If the small regions are
// detected first, detection of bigger regions is faster, as we can jump
// over the small regions.
for (po_iterator<DomTreeNode*> FI = po_begin(N), FE = po_end(N); FI != FE;
++FI) {
findRegionsWithEntry((*FI)->getBlock(), ShortCut);
}
}
Region *RegionInfo::getTopMostParent(Region *region) {
while (region->parent)
region = region->getParent();
return region;
}
void RegionInfo::buildRegionsTree(DomTreeNode *N, Region *region) {
BasicBlock *BB = N->getBlock();
// Passed region exit
while (BB == region->getExit())
region = region->getParent();
BBtoRegionMap::iterator it = BBtoRegion.find(BB);
// This basic block is a start block of a region. It is already in the
// BBtoRegion relation. Only the child basic blocks have to be updated.
if (it != BBtoRegion.end()) {
Region *newRegion = it->second;;
region->addSubRegion(getTopMostParent(newRegion));
region = newRegion;
} else {
BBtoRegion[BB] = region;
}
for (DomTreeNode::iterator CI = N->begin(), CE = N->end(); CI != CE; ++CI)
buildRegionsTree(*CI, region);
}
void RegionInfo::releaseMemory() {
BBtoRegion.clear();
if (TopLevelRegion)
delete TopLevelRegion;
TopLevelRegion = 0;
}
RegionInfo::RegionInfo() : FunctionPass(&ID) {
TopLevelRegion = 0;
}
RegionInfo::~RegionInfo() {
releaseMemory();
}
void RegionInfo::Calculate(Function &F) {
// ShortCut a function where for every BB the exit of the largest region
// starting with BB is stored. These regions can be threated as single BBS.
// This improves performance on linear CFGs.
BBtoBBMap ShortCut;
scanForRegions(F, &ShortCut);
BasicBlock *BB = &F.getEntryBlock();
buildRegionsTree(DT->getNode(BB), TopLevelRegion);
}
bool RegionInfo::runOnFunction(Function &F) {
releaseMemory();
DT = &getAnalysis<DominatorTree>();
PDT = &getAnalysis<PostDominatorTree>();
DF = &getAnalysis<DominanceFrontier>();
TopLevelRegion = new Region(&F.getEntryBlock(), 0, this, DT, 0);
updateStatistics(TopLevelRegion);
Calculate(F);
return false;
}
void RegionInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<DominatorTree>();
AU.addRequired<PostDominatorTree>();
AU.addRequired<DominanceFrontier>();
}
void RegionInfo::print(raw_ostream &OS, const Module *) const {
OS << "Region tree:\n";
TopLevelRegion->print(OS, true, 0);
OS << "End region tree\n";
}
void RegionInfo::verifyAnalysis() const {
// Only do verification when user wants to, otherwise this expensive check
// will be invoked by PMDataManager::verifyPreservedAnalysis when
// a regionpass (marked PreservedAll) finish.
if (!VerifyRegionInfo) return;
TopLevelRegion->verifyRegionNest();
}
// Region pass manager support.
Region *RegionInfo::getRegionFor(BasicBlock *BB) const {
BBtoRegionMap::const_iterator I=
BBtoRegion.find(BB);
return I != BBtoRegion.end() ? I->second : 0;
}
Region *RegionInfo::operator[](BasicBlock *BB) const {
return getRegionFor(BB);
}
Region*
RegionInfo::getCommonRegion(Region *A, Region *B) const {
assert (A && B && "One of the Regions is NULL");
if (A->contains(B)) return A;
while (!B->contains(A))
B = B->getParent();
return B;
}
Region*
RegionInfo::getCommonRegion(SmallVectorImpl<Region*> &Regions) const {
Region* ret = Regions.back();
Regions.pop_back();
for (SmallVectorImpl<Region*>::const_iterator I = Regions.begin(),
E = Regions.end(); I != E; ++I)
ret = getCommonRegion(ret, *I);
return ret;
}
Region*
RegionInfo::getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const {
Region* ret = getRegionFor(BBs.back());
BBs.pop_back();
for (SmallVectorImpl<BasicBlock*>::const_iterator I = BBs.begin(),
E = BBs.end(); I != E; ++I)
ret = getCommonRegion(ret, getRegionFor(*I));
return ret;
}
char RegionInfo::ID = 0;
INITIALIZE_PASS(RegionInfo, "regions",
"Detect single entry single exit regions", true, true);
// Create methods available outside of this file, to use them
// "include/llvm/LinkAllPasses.h". Otherwise the pass would be deleted by
// the link time optimization.
namespace llvm {
FunctionPass *createRegionInfoPass() {
return new RegionInfo();
}
}

View File

@ -0,0 +1,182 @@
//===- RegionPrinter.cpp - Print regions tree pass ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Print out the region tree of a function using dotty/graphviz.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionPrinter.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/DOTGraphTraitsPass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
/// onlySimpleRegion - Show only the simple regions in the RegionViewer.
static cl::opt<bool>
onlySimpleRegions("only-simple-regions",
cl::desc("Show only simple regions in the graphviz viewer"),
cl::Hidden,
cl::init(false));
namespace llvm {
template<>
struct DOTGraphTraits<RegionNode*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false)
: DefaultDOTGraphTraits(isSimple) {}
std::string getNodeLabel(RegionNode *Node, RegionNode *Graph) {
if (!Node->isSubRegion()) {
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
if (isSimple())
return DOTGraphTraits<const Function*>
::getSimpleNodeLabel(BB, BB->getParent());
else
return DOTGraphTraits<const Function*>
::getCompleteNodeLabel(BB, BB->getParent());
}
return "Not implemented";
}
};
template<>
struct DOTGraphTraits<RegionInfo*> : public DOTGraphTraits<RegionNode*> {
DOTGraphTraits (bool isSimple=false)
: DOTGraphTraits<RegionNode*>(isSimple) {}
static std::string getGraphName(RegionInfo *DT) {
return "Region Graph";
}
std::string getNodeLabel(RegionNode *Node, RegionInfo *G) {
return DOTGraphTraits<RegionNode*>::getNodeLabel(Node,
G->getTopLevelRegion());
}
// Print the cluster of the subregions. This groups the single basic blocks
// and adds a different background color for each group.
static void printRegionCluster(const Region *R, GraphWriter<RegionInfo*> &GW,
unsigned depth = 0) {
raw_ostream &O = GW.getOStream();
O.indent(2 * depth) << "subgraph cluster_" << static_cast<const void*>(R)
<< " {\n";
O.indent(2 * (depth + 1)) << "label = \"\";\n";
if (!onlySimpleRegions || R->isSimple()) {
O.indent(2 * (depth + 1)) << "style = filled;\n";
O.indent(2 * (depth + 1)) << "color = "
<< ((R->getDepth() * 2 % 12) + 1) << "\n";
} else {
O.indent(2 * (depth + 1)) << "style = solid;\n";
O.indent(2 * (depth + 1)) << "color = "
<< ((R->getDepth() * 2 % 12) + 2) << "\n";
}
for (Region::const_iterator RI = R->begin(), RE = R->end(); RI != RE; ++RI)
printRegionCluster(*RI, GW, depth + 1);
RegionInfo *RI = R->getRegionInfo();
for (Region::const_block_iterator BI = R->block_begin(),
BE = R->block_end(); BI != BE; ++BI) {
BasicBlock *BB = (*BI)->getNodeAs<BasicBlock>();
if (RI->getRegionFor(BB) == R)
O.indent(2 * (depth + 1)) << "Node"
<< static_cast<const void*>(RI->getTopLevelRegion()->getBBNode(BB))
<< ";\n";
}
O.indent(2 * depth) << "}\n";
}
static void addCustomGraphFeatures(const RegionInfo* RI,
GraphWriter<RegionInfo*> &GW) {
raw_ostream &O = GW.getOStream();
O << "\tcolorscheme = \"paired12\"\n";
printRegionCluster(RI->getTopLevelRegion(), GW, 4);
}
};
} //end namespace llvm
namespace {
struct RegionViewer
: public DOTGraphTraitsViewer<RegionInfo, false> {
static char ID;
RegionViewer() : DOTGraphTraitsViewer<RegionInfo, false>("reg", &ID){}
};
char RegionViewer::ID = 0;
INITIALIZE_PASS(RegionViewer, "view-regions", "View regions of function",
true, true);
struct RegionOnlyViewer
: public DOTGraphTraitsViewer<RegionInfo, true> {
static char ID;
RegionOnlyViewer() : DOTGraphTraitsViewer<RegionInfo, true>("regonly", &ID){}
};
char RegionOnlyViewer::ID = 0;
INITIALIZE_PASS(RegionOnlyViewer, "view-regions-only",
"View regions of function (with no function bodies)",
true, true);
struct RegionPrinter
: public DOTGraphTraitsPrinter<RegionInfo, false> {
static char ID;
RegionPrinter() :
DOTGraphTraitsPrinter<RegionInfo, false>("reg", &ID) {}
};
} //end anonymous namespace
char RegionPrinter::ID = 0;
INITIALIZE_PASS(RegionPrinter, "dot-regions",
"Print regions of function to 'dot' file", true, true);
struct RegionOnlyPrinter
: public DOTGraphTraitsPrinter<RegionInfo, true> {
static char ID;
RegionOnlyPrinter() :
DOTGraphTraitsPrinter<RegionInfo, true>("reg", &ID) {}
};
char RegionOnlyPrinter::ID = 0;
INITIALIZE_PASS(RegionOnlyPrinter, "dot-regions-only",
"Print regions of function to 'dot' file "
"(with no function bodies)",
true, true);
FunctionPass* llvm::createRegionViewerPass() {
return new RegionViewer();
}
FunctionPass* llvm::createRegionOnlyViewerPass() {
return new RegionOnlyViewer();
}
FunctionPass* llvm::createRegionPrinterPass() {
return new RegionPrinter();
}
FunctionPass* llvm::createRegionOnlyPrinterPass() {
return new RegionOnlyPrinter();
}

View File

@ -0,0 +1,42 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats -analyze < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @BZ2_blockSort() nounwind {
start:
br label %while
while:
br label %while.body134.i.i
while.body134.i.i:
br i1 1, label %end, label %w
w:
br label %if.end140.i.i
if.end140.i.i:
br i1 1, label %while.end186.i.i, label %if.end183.i.i
if.end183.i.i:
br label %while.body134.i.i
while.end186.i.i:
br label %while
end:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] start => <Function Return>
; CHECK: [1] while => end
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: start, while, while.body134.i.i, end, w, if.end140.i.i, while.end186.i.i, if.end183.i.i,
; BBIT: while, while.body134.i.i, w, if.end140.i.i, while.end186.i.i, if.end183.i.i,
; RNIT: start, while => end, end,
; RNIT: while, while.body134.i.i, w, if.end140.i.i, while.end186.i.i, if.end183.i.i,

View File

@ -0,0 +1,33 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
5:
br label %"0"
0:
br label %"1"
1:
br i1 1, label %"2", label %"3"
2:
ret void
3:
br i1 1, label %"1", label %"4"
4:
br label %"0"
}
; CHECK-NOT: =>
; CHECK: [0] 5 => <Function Return>
; CHECK: [1] 0 => 2
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: 5, 0, 1, 2, 3, 4,
; BBIT: 0, 1, 3, 4,
; RNIT: 5, 0 => 2, 2,
; RNIT: 0, 1, 3, 4,

View File

@ -0,0 +1,60 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define internal fastcc zeroext i8 @handle_compress() nounwind {
end165:
br i1 1, label %false239, label %true181
true181:
br i1 1, label %then187, label %else232
then187:
br label %end265
else232:
br i1 1, label %false239, label %then245
false239:
br i1 1, label %then245, label %else259
then245:
br i1 1, label %then251, label %end253
then251:
br label %end253
end253:
br label %end265
else259:
br label %end265
end265:
br i1 1, label %then291, label %end298
then291:
br label %end298
end298:
ret i8 1
}
; CHECK-NOT: =>
; CHECK: [0] end165 => <Function Return>
; CHECK-NEXT: [1] end165 => end265
; CHECK-NEXT: [2] then245 => end253
; CHECK-NEXT: [1] end265 => end298
; STAT: 4 region - The # of regions
; BBIT: end165, false239, then245, then251, end253, end265, then291, end298, else259, true181, then187, else232,
; BBIT: end165, false239, then245, then251, end253, else259, true181, then187, else232,
; BBIT: then245, then251,
; BBIT: end265, then291,
; RNIT: end165 => end265, end265 => end298, end298,
; RNIT: end165, false239, then245 => end253, end253, else259, true181, then187, else232,
; RNIT: then245, then251,
; RNIT: end265, then291,

View File

@ -0,0 +1,44 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define internal fastcc void @compress() nounwind {
end33:
br i1 1, label %end124, label %lor.lhs.false95
lor.lhs.false95:
br i1 1, label %then107, label %end172
then107:
br i1 1, label %end124, label %then113
then113:
br label %end124
end124:
br label %exit
end172:
br label %exit
exit:
unreachable
}
; CHECK-NOT: =>
; CHECK: [0] end33 => <Function Return>
; CHECK-NEXT: [1] end33 => exit
; CHECK-NEXT: [2] then107 => end124
; STAT: 3 region - The # of regions
; BBIT: end33, end124, exit, lor.lhs.false95, then107, then113, end172,
; BBIT: end33, end124, lor.lhs.false95, then107, then113, end172,
; BBIT: then107, then113,
; RNIT: end33 => exit, exit,
; RNIT: end33, end124, lor.lhs.false95, then107 => end124, end172,
; RNIT: then107, then113,

View File

@ -0,0 +1,26 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br label %"1"
1:
br i1 1, label %"2", label %"3"
2:
br label %"3"
3:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK: [1] 1 => 3
; STAT: 2 region - The # of regions
; BBIT: 0, 1, 2, 3,
; BBIT: 1, 2,
; RNIT: 0, 1 => 3, 3,
; RNIT: 1, 2,

View File

@ -0,0 +1,31 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br i1 1, label %"1", label %"4"
1:
br i1 1, label %"2", label %"3"
2:
br label %"4"
3:
br label %"4"
4:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 0 => 4
; CHECK-NEXT: [2] 1 => 4
; STAT: 3 region - The # of regions
; BBIT: 0, 1, 2, 4, 3,
; BBIT: 0, 1, 2, 3,
; BBIT: 1, 2, 3,
; RNIT: 0 => 4, 4,
; RNIT: 0, 1 => 4,
; RNIT: 1, 2, 3,

View File

@ -0,0 +1,28 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br label %"1"
1:
br i1 1, label %"2", label %"3"
2:
br label %"4"
3:
br label %"4"
4:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 1 => 4
; STAT: 2 region - The # of regions
; BBIT: 0, 1, 2, 4, 3,
; BBIT: 1, 2, 3,
; RNIT: 0, 1 => 4, 4,
; RNIT: 1, 2, 3,

View File

@ -0,0 +1,3 @@
load_lib llvm.exp
RunLLVMTests [lsort [glob -nocomplain $srcdir/$subdir/*.{ll,c,cpp}]]

View File

@ -0,0 +1,38 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define internal fastcc zeroext i8 @handle_compress() nounwind {
entry:
br label %outer
outer:
br label %body
body:
br i1 1, label %body.i, label %if.end
body.i:
br i1 1, label %end, label %if.end
if.end:
br label %if.then64
if.then64:
br label %outer
end:
ret i8 1
}
; CHECK-NOT: =>
; CHECK: [0] entry => <Function Return>
; CHECK-NEXT: [1] outer => end
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: entry, outer, body, body.i, end, if.end, if.then64,
; BBIT: outer, body, body.i, if.end, if.then64,
; RNIT: entry, outer => end, end,
; RNIT: outer, body, body.i, if.end, if.then64,

View File

@ -0,0 +1,20 @@
; RUN: opt -regions -analyze < %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
define void @normal_condition() nounwind {
0:
br label %"1"
1:
br i1 1, label %"2", label %"3"
2:
br label %"2"
3:
br label %"4"
4:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK: [1] 1 => 4
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions

View File

@ -0,0 +1,36 @@
; RUN: opt -regions -analyze < %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br label %"1"
1:
br i1 1, label %"2", label %"3"
2:
br label %"5"
5:
br i1 1, label %"11", label %"12"
11:
br label %"6"
12:
br label %"6"
6:
br label %"2"
3:
br label %"4"
4:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK: [1] 1 => 3
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: 0, 1, 2, 5, 11, 6, 12, 3, 4,
; BBIT: 1, 2, 5, 11, 6, 12,
; RNIT: 0, 1 => 3, 3, 4,
; RNIT: 1, 2, 5, 11, 6, 12,

View File

@ -0,0 +1,52 @@
; RUN: opt -regions -analyze < %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br label %"7"
7:
br i1 1, label %"1", label %"8"
1:
br i1 1, label %"2", label %"3"
2:
br label %"5"
5:
br i1 1, label %"11", label %"12"
11:
br label %"6"
12:
br label %"6"
6:
br label %"2"
8:
br label %"9"
9:
br i1 1, label %"13", label %"14"
13:
br label %"10"
14:
br label %"10"
10:
br label %"8"
3:
br label %"4"
4:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 1 => 3
; CHECK-NEXT: [1] 7 => 1
; STAT: 3 region - The # of regions
; STAT: 2 region - The # of simple regions
; BBIT: 0, 7, 1, 2, 5, 11, 6, 12, 3, 4, 8, 9, 13, 10, 14,
; BBIT: 7, 8, 9, 13, 10, 14,
; BBIT: 1, 2, 5, 11, 6, 12,
; RNIT: 0, 7 => 1, 1 => 3, 3, 4,
; RNIT: 7, 8, 9, 13, 10, 14,
; RNIT: 1, 2, 5, 11, 6, 12,

View File

@ -0,0 +1,48 @@
; RUN: opt -regions -analyze < %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br label %"7"
7:
br i1 1, label %"1", label %"8"
1:
br i1 1, label %"2", label %"3"
2:
br label %"5"
5:
br i1 1, label %"11", label %"12"
11:
br label %"6"
12:
br label %"6"
6:
br i1 1, label %"2", label %"10"
8:
br label %"9"
9:
br i1 1, label %"13", label %"14"
13:
br label %"10"
14:
br label %"10"
10:
br label %"8"
3:
br label %"4"
4:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 7 => 3
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: 0, 7, 1, 2, 5, 11, 6, 10, 8, 9, 13, 14, 12, 3, 4,
; BBIT: 7, 1, 2, 5, 11, 6, 10, 8, 9, 13, 14, 12,
; RNIT: 0, 7 => 3, 3, 4,
; RNIT: 7, 1, 2, 5, 11, 6, 10, 8, 9, 13, 14, 12,

View File

@ -0,0 +1,46 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition() nounwind {
0:
br label %"1"
1:
br i1 1, label %"6", label %"2"
2:
br i1 1, label %"3", label %"4"
3:
br label %"5"
4:
br label %"5"
5:
br label %"8"
8:
br i1 1, label %"7", label %"9"
9:
br label %"2"
7:
br label %"6"
6:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 1 => 6
; CHECK-NEXT: [2] 2 => 7
; CHECK-NEXT: [3] 2 => 5
; STAT: 4 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: 0, 1, 6, 2, 3, 5, 8, 7, 9, 4,
; BBIT: 1, 2, 3, 5, 8, 7, 9, 4,
; BBIT: 2, 3, 5, 8, 9, 4,
; BBIT: 2, 3, 4,
; RNIT: 0, 1 => 6, 6,
; RNIT: 1, 2 => 7, 7,
; RNIT: 2 => 5, 5, 8, 9,
; RNIT: 2, 3, 4,

View File

@ -0,0 +1,40 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define internal fastcc zeroext i8 @loops_1() nounwind {
entry:
br i1 1, label %outer , label %a
a:
br label %body
outer:
br label %body
body:
br i1 1, label %land, label %if
land:
br i1 1, label %exit, label %end
exit:
br i1 1, label %if, label %end
if:
br label %outer
end:
ret i8 1
}
; CHECK-NOT: =>
; CHECK: [0] entry => <Function Return>
; CHECK-NEXT: [1] entry => end
; STAT: 2 region - The # of regions
; BBIT: entry, outer, body, land, exit, if, end, a,
; BBIT: entry, outer, body, land, exit, if, a,
; RNIT: entry => end, end,
; RNIT: entry, outer, body, land, exit, if, a,

View File

@ -0,0 +1,49 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @meread_() nounwind {
entry:
br label %bb23
bb23:
br label %bb.i
bb.i: ; preds = %bb.i, %bb54
br label %pflini_.exit
pflini_.exit: ; preds = %bb.i
br label %bb58thread-split
bb58thread-split: ; preds = %bb64, %bb61, %pflini_.exit
br label %bb58
bb58: ; preds = %bb60, %bb58thread-split
br i1 1, label %bb59, label %bb23
bb59: ; preds = %bb58
switch i32 1, label %bb60 [
i32 1, label %l98
]
bb60: ; preds = %bb59
br i1 1, label %bb61, label %bb58
bb61: ; preds = %bb60
br label %bb58thread-split
l98: ; preds = %bb69, %bb59
ret void
}
; CHECK-NOT: =>
; CHECK: [0] entry => <Function Return>
; CHECK: [1] bb23 => l98
; STAT: 2 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: entry, bb23, bb.i, pflini_.exit, bb58thread-split, bb58, bb59, bb60, bb61, l98,
; BBIT: bb23, bb.i, pflini_.exit, bb58thread-split, bb58, bb59, bb60, bb61,
; RNIT: entry, bb23 => l98, l98,
; RNIT: bb23, bb.i, pflini_.exit, bb58thread-split, bb58, bb59, bb60, bb61,

View File

@ -0,0 +1,69 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @a_linear_impl_fig_1() nounwind {
0:
br i1 1, label %"1", label %"15"
1:
switch i32 0, label %"2" [ i32 0, label %"3"
i32 1, label %"7"]
2:
br label %"4"
3:
br label %"5"
4:
br label %"6"
5:
br label %"6"
6:
br label %"7"
7:
br label %"15"
15:
br label %"8"
8:
br label %"16"
16:
br label %"9"
9:
br i1 1, label %"10", label %"11"
11:
br i1 1, label %"13", label %"12"
13:
br label %"14"
12:
br label %"14"
14:
br label %"8"
10:
br label %"17"
17:
br label %"18"
18:
ret void
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 0 => 15
; CHECK-NEXT: [2] 1 => 7
; CHECK-NEXT: [1] 8 => 10
; CHECK-NEXT: [2] 11 => 14
; STAT: 5 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: 0, 1, 2, 4, 6, 7, 15, 8, 16, 9, 10, 17, 18, 11, 13, 14, 12, 3, 5,
; BBIT: 0, 1, 2, 4, 6, 7, 3, 5,
; BBIT: 1, 2, 4, 6, 3, 5,
; BBIT: 8, 16, 9, 11, 13, 14, 12,
; BBIT: 11, 13, 12,
; RNIT: 0 => 15, 15, 8 => 10, 10, 17, 18,
; RNIT: 0, 1 => 7, 7,
; RNIT: 1, 2, 4, 6, 3, 5,
; RNIT: 8, 16, 9, 11 => 14, 14,
; RNIT: 11, 13, 12,

View File

@ -0,0 +1,38 @@
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @normal_condition_0() nounwind {
bb38: ; preds = %bb34, %bb34, %bb37
switch i32 undef, label %bb42 [
i32 67, label %bb42
i32 90, label %bb41
]
bb41: ; preds = %bb38
br label %bb42
bb42: ; preds = %bb38, %bb38, %bb41
ret void
}
; BBIT: bb38, bb42, bb41,
; BBIT: bb38, bb41,
; RNIT: bb38 => bb42, bb42,
; RNIT: bb38, bb41,
define void @normal_condition_1() nounwind {
bb38: ; preds = %bb34, %bb34, %bb37
switch i32 undef, label %bb41 [
i32 67, label %bb42
i32 90, label %bb42
]
bb41: ; preds = %bb38
br label %bb42
bb42: ; preds = %bb38, %bb38, %bb41
ret void
}
; BBIT: bb38, bb41, bb42,
; BBIT: bb38, bb41,
; RNIT: bb38 => bb42, bb42,
; RNIT: bb38, bb41,

View File

@ -0,0 +1,33 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define internal fastcc zeroext i8 @handle_compress() nounwind {
entry:
br label %outer
outer:
br label %body
body:
br i1 1, label %exit172, label %end
exit172:
br i1 1, label %end, label %outer
end:
ret i8 1
}
; CHECK-NOT: =>
; CHECK: [0] entry => <Function Return>
; CHECK-NEXT: [1] outer => end
; STAT: 2 region - The # of regions
; BBIT: entry, outer, body, exit172, end,
; BBIT: outer, body, exit172,
; RNIT: entry, outer => end, end,
; RNIT: outer, body, exit172,

View File

@ -0,0 +1,49 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @MAIN__() nounwind {
entry:
br label %__label_002001.outer
__label_002001.outer: ; preds = %bb236, %bb92
br label %__label_002001
__label_002001: ; preds = %bb229, %__label_002001.outer
br i1 1, label %bb93, label %__label_000020
bb93: ; preds = %__label_002001
br i1 1, label %__label_000020, label %bb197
bb197: ; preds = %bb193
br i1 1, label %bb229, label %bb224
bb224: ; preds = %bb223, %bb227
br i1 1, label %bb229, label %bb224
bb229: ; preds = %bb227, %bb223
br i1 1, label %__label_002001, label %__label_002001.outer
__label_000020: ; preds = %__label_002001, %bb194
ret void
}
; CHECK-NOT: =>
; CHECK: [0] entry => <Function Return>
; CHECK-NEXT: [1] __label_002001.outer => __label_000020
; CHECK-NEXT; [2] bb197 => bb229
; CHECK-NEXT; [3] bb224 => bb229
; STAT: 4 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: entry, __label_002001.outer, __label_002001, bb93, __label_000020, bb197, bb229, bb224,
; BBIT: __label_002001.outer, __label_002001, bb93, bb197, bb229, bb224,
; BBIT: bb197, bb224,
; BBIT: bb224,
; RNIT: entry, __label_002001.outer => __label_000020, __label_000020,
; RNIT: __label_002001.outer, __label_002001, bb93, bb197 => bb229, bb229,
; RNIT: bb197, bb224 => bb229,
; RNIT: bb224,

View File

@ -0,0 +1,55 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define void @a_linear_impl_fig_1() nounwind {
0:
br label %"1"
1:
br label %"2"
2:
br label %"3"
3:
br i1 1, label %"13", label %"4"
4:
br i1 1, label %"5", label %"1"
5:
br i1 1, label %"8", label %"6"
6:
br i1 1, label %"7", label %"4"
7:
ret void
8:
br i1 1, label %"9", label %"1"
9:
br label %"10"
10:
br i1 1, label %"12", label %"11"
11:
br i1 1, label %"9", label %"8"
13:
br i1 1, label %"2", label %"1"
12:
switch i32 0, label %"1" [ i32 0, label %"9"
i32 1, label %"8"]
}
; CHECK-NOT: =>
; CHECK: [0] 0 => <Function Return>
; CHECK-NEXT: [1] 1 => 7
; CHECK-NEXT: [2] 1 => 4
; CHECK-NEXT: [2] 8 => 1
; STAT: 4 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: 0, 1, 2, 3, 13, 4, 5, 8, 9, 10, 12, 11, 6, 7,
; BBIT: 1, 2, 3, 13, 4, 5, 8, 9, 10, 12, 11, 6,
; BBIT: 1, 2, 3, 13,
; BBIT: 8, 9, 10, 12, 11,
; RNIT: 0, 1 => 7, 7,
; RNIT: 1 => 4, 4, 5, 8 => 1, 6,
; RNIT: 1, 2, 3, 13,
; RNIT: 8, 9, 10, 12, 11,

View File

@ -0,0 +1,46 @@
; RUN: opt -regions -analyze < %s | FileCheck %s
; RUN: opt -regions -stats < %s |& FileCheck -check-prefix=STAT %s
; RUN: opt -regions -print-region-style=bb -analyze < %s |& FileCheck -check-prefix=BBIT %s
; RUN: opt -regions -print-region-style=rn -analyze < %s |& FileCheck -check-prefix=RNIT %s
define internal fastcc zeroext i8 @handle_compress() nounwind {
entry:
br label %outer
outer:
br label %body
body:
br i1 1, label %else, label %true77
true77:
br i1 1, label %then83, label %else
then83:
br label %outer
else:
br label %else106
else106:
br i1 1, label %end, label %outer
end:
ret i8 1
}
; CHECK-NOT: =>
; CHECK: [0] entry => <Function Return>
; CHECK-NEXT: [1] outer => end
; CHECK-NEXT: [2] outer => else
; STAT: 3 region - The # of regions
; STAT: 1 region - The # of simple regions
; BBIT: entry, outer, body, else, else106, end, true77, then83,
; BBIT: outer, body, else, else106, true77, then83,
; BBIT: outer, body, true77, then83,
; RNIT: entry, outer => end, end,
; RNIT: outer => else, else, else106,
; RNIT: outer, body, true77, then83,