[mlir][quantizer] Add gathering of per-axis statistics in quantizer.

Reviewers: stellaraccident, nicolasvasilache

Reviewed By: stellaraccident

Subscribers: Joonsoo, merge_guards_bot, denis13

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73556
This commit is contained in:
Dmitry Murygin 2020-02-08 15:07:35 -08:00 committed by Stella Laurenzo
parent abe3e5babd
commit 327e062a02
2 changed files with 132 additions and 8 deletions

View File

@ -27,11 +27,25 @@ struct TensorAxisStatistics {
double mean = 0;
double variance = 0;
int64_t sampleSizePerAxis = 0;
SmallVector<double, 4> minValuePerAxis;
SmallVector<double, 4> maxValuePerAxis;
SmallVector<double, 4> meanPerAxis;
SmallVector<double, 4> variancePerAxis;
TensorAxisStatistics() {}
TensorAxisStatistics(int64_t sampleSize, double minValue, double maxValue,
double mean, double variance)
: sampleSize(sampleSize), minValue(minValue), maxValue(maxValue),
mean(mean), variance(variance) {}
TensorAxisStatistics(int64_t sampleSize, ArrayRef<double> minValues,
ArrayRef<double> maxValues, ArrayRef<double> means,
ArrayRef<double> variances)
: sampleSizePerAxis(sampleSize),
minValuePerAxis(minValues.begin(), minValues.end()),
maxValuePerAxis(maxValues.begin(), maxValues.end()),
meanPerAxis(means.begin(), means.end()),
variancePerAxis(variances.begin(), variances.end()) {}
void clear() { *this = TensorAxisStatistics(); }
};
@ -70,7 +84,11 @@ public:
bool get(TensorAxisStatistics &stats) const override;
// TODO: Implement per-axis.
bool supportsPerAxis() const override;
unsigned getAxisCount() const override;
bool getForAxis(unsigned axis, TensorAxisStatistics &stats) const override;
private:
Attribute attr;

View File

@ -50,12 +50,53 @@ static void collectElementsStatisticsDim(ElementsAttr attr,
}
}
static void collectElementsStatisticsDimForAxis(
unsigned axis, ElementsAttr attr, unsigned numElements,
ArrayRef<int64_t> shape, SmallVectorImpl<uint64_t> &indices, uint64_t dim,
TensorAxisStatistics &statistics) {
// Recursive terminating condition.
if (dim >= shape.size())
return;
// Axis is passed separately
if (dim == axis) {
collectElementsStatisticsDimForAxis(axis, attr, numElements, shape, indices,
dim + 1, statistics);
return;
}
// Go to last not axis dim
if (dim < (shape.size() - 2) ||
(dim == (shape.size() - 2) && axis != (shape.size() - 1))) {
// Recurse past dim.
for (uint64_t i = 0, s = shape[dim]; i < s; ++i) {
indices[dim] = i;
collectElementsStatisticsDimForAxis(axis, attr, numElements, shape,
indices, dim + 1, statistics);
}
return;
}
// Pass axis
uint64_t axisSize = shape[axis];
for (uint64_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) {
indices[axis] = axisIdx;
// Collection dim.
for (uint64_t i = 0, s = shape[dim]; i < s; ++i) {
indices[dim] = i;
double value = attr.getValue<FloatAttr>(indices).getValueAsDouble();
statistics.minValuePerAxis[axisIdx] =
std::min(statistics.minValuePerAxis[axisIdx], value);
statistics.maxValuePerAxis[axisIdx] =
std::max(statistics.maxValuePerAxis[axisIdx], value);
statistics.meanPerAxis[axisIdx] += value / numElements;
// TODO: Calculate a running variance.
}
}
}
static bool getElementsStatistics(ElementsAttr attr,
TensorAxisStatistics &statistics) {
statistics.clear();
statistics.minValue = std::numeric_limits<double>::infinity();
statistics.maxValue = -std::numeric_limits<double>::infinity();
ShapedType sType = attr.getType();
if (!sType.hasStaticShape())
return false;
@ -67,6 +108,11 @@ static bool getElementsStatistics(ElementsAttr attr,
indices.resize(sType.getRank());
ArrayRef<int64_t> shape = sType.getShape();
statistics.minValue = std::numeric_limits<double>::infinity();
statistics.maxValue = -std::numeric_limits<double>::infinity();
statistics.mean = 0;
statistics.variance = 0;
auto numElements = sType.getNumElements();
collectElementsStatisticsDim(attr, numElements, shape, indices, 0,
statistics);
@ -75,6 +121,35 @@ static bool getElementsStatistics(ElementsAttr attr,
return true;
}
static bool getElementsStatisticsForAxis(unsigned axis, ElementsAttr attr,
TensorAxisStatistics &statistics) {
ShapedType sType = attr.getType();
if (!sType.hasStaticShape() || axis >= sType.getRank())
return false;
Type elementTy = sType.getElementType();
if (!elementTy.isa<FloatType>())
return false;
SmallVector<uint64_t, 4> indices;
indices.resize(sType.getRank());
ArrayRef<int64_t> shape = sType.getShape();
uint64_t axisSize = shape[axis];
statistics.minValuePerAxis.assign(axisSize,
std::numeric_limits<double>::infinity());
statistics.maxValuePerAxis.assign(axisSize,
-std::numeric_limits<double>::infinity());
statistics.meanPerAxis.assign(axisSize, 0);
statistics.variancePerAxis.assign(axisSize, 0);
uint64_t numElements = sType.getNumElements() / shape[axis];
collectElementsStatisticsDimForAxis(axis, attr, numElements, shape, indices,
0, statistics);
statistics.sampleSizePerAxis = numElements;
return true;
}
bool AttributeTensorStatistics::get(TensorAxisStatistics &stats) const {
if (FloatAttr floatAttr = attr.dyn_cast<FloatAttr>()) {
double value = floatAttr.getValueAsDouble();
@ -86,10 +161,41 @@ bool AttributeTensorStatistics::get(TensorAxisStatistics &stats) const {
return false;
}
bool AttributeTensorStatistics::supportsPerAxis() const {
if (auto eltAttr = attr.dyn_cast<ElementsAttr>())
return eltAttr.getType().getRank() > 1;
return false;
}
unsigned AttributeTensorStatistics::getAxisCount() const {
if (!supportsPerAxis())
return 0;
return attr.cast<ElementsAttr>().getType().getRank();
}
bool AttributeTensorStatistics::getForAxis(unsigned axis,
TensorAxisStatistics &stats) const {
if (!supportsPerAxis())
return false;
auto eltAttr = attr.cast<ElementsAttr>();
return getElementsStatisticsForAxis(axis, eltAttr, stats);
}
raw_ostream &mlir::quantizer::operator<<(raw_ostream &os,
const TensorAxisStatistics &stats) {
os << "STATS[sampleSize=" << stats.sampleSize << ", min=" << stats.minValue
<< ", maxValue=" << stats.maxValue << ", mean=" << stats.mean
<< ", variance=" << stats.variance << "]";
os << "STATS[sampleSizeLayer=" << stats.sampleSize
<< ", minValueLayer=" << stats.minValue
<< ", maxValueLayer=" << stats.maxValue << ", meanLayer=" << stats.mean
<< ", varianceLayer=" << stats.variance
<< ", sampleSizePerAxis=" << stats.sampleSizePerAxis << ", statsPerAxis={";
for (unsigned i = 0, n = stats.minValuePerAxis.size(); i < n; ++i) {
os << "minValue=" << stats.minValuePerAxis[i]
<< ", maxValue=" << stats.maxValuePerAxis[i]
<< ", mean=" << stats.meanPerAxis[i]
<< ", variance=" << stats.variancePerAxis[i];
if (i != n - 1)
os << "; ";
}
os << "}]";
return os;
}