forked from OSchip/llvm-project
[VPlan] Handle scalarized values in VPTransformState.
This patch adds plumbing to handle scalarized values directly in VPTransformState. Reviewed By: gilr Differential Revision: https://reviews.llvm.org/D92282
This commit is contained in:
parent
05d5125d8a
commit
3201274dea
|
@ -7718,9 +7718,15 @@ void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
|
||||||
|
|
||||||
assert(BestVF.hasValue() && "Vectorization Factor is missing");
|
assert(BestVF.hasValue() && "Vectorization Factor is missing");
|
||||||
|
|
||||||
VPTransformState State{*BestVF, BestUF, LI,
|
VPTransformState State{*BestVF,
|
||||||
DT, ILV.Builder, ILV.VectorLoopValueMap,
|
BestUF,
|
||||||
&ILV, CallbackILV};
|
OrigLoop,
|
||||||
|
LI,
|
||||||
|
DT,
|
||||||
|
ILV.Builder,
|
||||||
|
ILV.VectorLoopValueMap,
|
||||||
|
&ILV,
|
||||||
|
CallbackILV};
|
||||||
State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
|
State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
|
||||||
State.TripCount = ILV.getOrCreateTripCount(nullptr);
|
State.TripCount = ILV.getOrCreateTripCount(nullptr);
|
||||||
State.CanonicalIV = ILV.Induction;
|
State.CanonicalIV = ILV.Induction;
|
||||||
|
|
|
@ -216,6 +216,27 @@ VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
|
||||||
return It;
|
return It;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
|
||||||
|
if (!Def->getDef() && OrigLoop->isLoopInvariant(Def->getLiveInIRValue()))
|
||||||
|
return Def->getLiveInIRValue();
|
||||||
|
|
||||||
|
if (hasScalarValue(Def, Instance))
|
||||||
|
return Data.PerPartScalars[Def][Instance.Part][Instance.Lane];
|
||||||
|
|
||||||
|
if (hasVectorValue(Def, Instance.Part)) {
|
||||||
|
assert(Data.PerPartOutput.count(Def));
|
||||||
|
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
|
||||||
|
if (!VecPart->getType()->isVectorTy()) {
|
||||||
|
assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
|
||||||
|
return VecPart;
|
||||||
|
}
|
||||||
|
// TODO: Cache created scalar values.
|
||||||
|
return Builder.CreateExtractElement(VecPart,
|
||||||
|
Builder.getInt32(Instance.Lane));
|
||||||
|
}
|
||||||
|
return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
|
||||||
|
}
|
||||||
|
|
||||||
BasicBlock *
|
BasicBlock *
|
||||||
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
||||||
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
||||||
|
|
|
@ -246,12 +246,12 @@ struct VPCallback {
|
||||||
/// VPTransformState holds information passed down when "executing" a VPlan,
|
/// VPTransformState holds information passed down when "executing" a VPlan,
|
||||||
/// needed for generating the output IR.
|
/// needed for generating the output IR.
|
||||||
struct VPTransformState {
|
struct VPTransformState {
|
||||||
VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
|
VPTransformState(ElementCount VF, unsigned UF, Loop *OrigLoop, LoopInfo *LI,
|
||||||
DominatorTree *DT, IRBuilder<> &Builder,
|
DominatorTree *DT, IRBuilder<> &Builder,
|
||||||
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV,
|
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV,
|
||||||
VPCallback &Callback)
|
VPCallback &Callback)
|
||||||
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
|
: VF(VF), UF(UF), Instance(), OrigLoop(OrigLoop), LI(LI), DT(DT),
|
||||||
ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
|
Builder(Builder), ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
|
||||||
|
|
||||||
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
||||||
ElementCount VF;
|
ElementCount VF;
|
||||||
|
@ -269,6 +269,9 @@ struct VPTransformState {
|
||||||
typedef SmallVector<Value *, 2> PerPartValuesTy;
|
typedef SmallVector<Value *, 2> PerPartValuesTy;
|
||||||
|
|
||||||
DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
|
DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
|
||||||
|
|
||||||
|
using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
|
||||||
|
DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
|
||||||
} Data;
|
} Data;
|
||||||
|
|
||||||
/// Get the generated Value for a given VPValue and a given Part. Note that
|
/// Get the generated Value for a given VPValue and a given Part. Note that
|
||||||
|
@ -285,24 +288,21 @@ struct VPTransformState {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Get the generated Value for a given VPValue and given Part and Lane.
|
/// Get the generated Value for a given VPValue and given Part and Lane.
|
||||||
Value *get(VPValue *Def, const VPIteration &Instance) {
|
Value *get(VPValue *Def, const VPIteration &Instance);
|
||||||
// If the Def is managed directly by VPTransformState, extract the lane from
|
|
||||||
// the relevant part. Note that currently only VPInstructions and external
|
|
||||||
// defs are managed by VPTransformState. Other Defs are still created by ILV
|
|
||||||
// and managed in its ValueMap. For those this method currently just
|
|
||||||
// delegates the call to ILV below.
|
|
||||||
if (Data.PerPartOutput.count(Def)) {
|
|
||||||
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
|
|
||||||
if (!VecPart->getType()->isVectorTy()) {
|
|
||||||
assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
|
|
||||||
return VecPart;
|
|
||||||
}
|
|
||||||
// TODO: Cache created scalar values.
|
|
||||||
return Builder.CreateExtractElement(VecPart,
|
|
||||||
Builder.getInt32(Instance.Lane));
|
|
||||||
}
|
|
||||||
|
|
||||||
return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
|
bool hasVectorValue(VPValue *Def, unsigned Part) {
|
||||||
|
auto I = Data.PerPartOutput.find(Def);
|
||||||
|
return I != Data.PerPartOutput.end() && Part < I->second.size() &&
|
||||||
|
I->second[Part];
|
||||||
|
}
|
||||||
|
|
||||||
|
bool hasScalarValue(VPValue *Def, VPIteration Instance) {
|
||||||
|
auto I = Data.PerPartScalars.find(Def);
|
||||||
|
if (I == Data.PerPartScalars.end())
|
||||||
|
return false;
|
||||||
|
return Instance.Part < I->second.size() &&
|
||||||
|
Instance.Lane < I->second[Instance.Part].size() &&
|
||||||
|
I->second[Instance.Part][Instance.Lane];
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Set the generated Value for a given VPValue and a given Part.
|
/// Set the generated Value for a given VPValue and a given Part.
|
||||||
|
@ -315,6 +315,17 @@ struct VPTransformState {
|
||||||
}
|
}
|
||||||
void set(VPValue *Def, Value *IRDef, Value *V, unsigned Part);
|
void set(VPValue *Def, Value *IRDef, Value *V, unsigned Part);
|
||||||
|
|
||||||
|
void set(VPValue *Def, Value *V, const VPIteration &Instance) {
|
||||||
|
auto Iter = Data.PerPartScalars.insert({Def, {}});
|
||||||
|
auto &PerPartVec = Iter.first->second;
|
||||||
|
while (PerPartVec.size() <= Instance.Part)
|
||||||
|
PerPartVec.emplace_back();
|
||||||
|
auto &Scalars = PerPartVec[Instance.Part];
|
||||||
|
while (Scalars.size() <= Instance.Lane)
|
||||||
|
Scalars.push_back(nullptr);
|
||||||
|
Scalars[Instance.Lane] = V;
|
||||||
|
}
|
||||||
|
|
||||||
/// Hold state information used when constructing the CFG of the output IR,
|
/// Hold state information used when constructing the CFG of the output IR,
|
||||||
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
||||||
struct CFGState {
|
struct CFGState {
|
||||||
|
@ -340,6 +351,9 @@ struct VPTransformState {
|
||||||
CFGState() = default;
|
CFGState() = default;
|
||||||
} CFG;
|
} CFG;
|
||||||
|
|
||||||
|
/// Hold a pointer to the original loop.
|
||||||
|
Loop *OrigLoop;
|
||||||
|
|
||||||
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
||||||
LoopInfo *LI;
|
LoopInfo *LI;
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue