[clangd] Lib to compute and represent selection under cursor.

Summary:
The primary problem this solves is to expose the codeAction selection to
AST-based refactorings in a way that makes it easy and efficient for them to
bind to the right parts of the AST.

It should also allow us to make XRefs based features (textDocument/definition)
more robust, more easily implement textDocument/typeDefinition etc.
As an example, template parameter references can be identified without special
handling.
There should be slight speedup too: we can prune most of the AST traversal
in most cases.

Elephant in the room: this is similar-but-different to Tooling/Refactoring/ASTSelection.
That captures a smaller set of AST nodes, has a slightly different way of
representing selections, and generally has mare features and does more work.
The overall shape is pretty similar, and yet I can't quite get to behave as I
expect.

Reviewers: ilya-biryukov, kadircet

Subscribers: mgorny, ioeric, MaskRay, jkorous, mgrang, arphaman

Tags: #clang

Differential Revision: https://reviews.llvm.org/D57562

llvm-svn: 352874
This commit is contained in:
Sam McCall 2019-02-01 15:05:11 +00:00
parent fbcbac7174
commit 3186e3ceb8
5 changed files with 670 additions and 0 deletions

View File

@ -46,6 +46,7 @@ add_clang_library(clangDaemon
Protocol.cpp
Quality.cpp
RIFF.cpp
Selection.cpp
SourceCode.cpp
Threading.cpp
Trace.cpp

View File

@ -0,0 +1,301 @@
//===--- Selection.h ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Selection.h"
#include "ClangdUnit.h"
#include "clang/AST/RecursiveASTVisitor.h"
namespace clang {
namespace clangd {
namespace {
using Node = SelectionTree::Node;
using ast_type_traits::DynTypedNode;
// We find the selection by visiting written nodes in the AST, looking for nodes
// that intersect with the selected character range.
//
// While traversing, we maintain a parent stack. As nodes pop off the stack,
// we decide whether to keep them or not. To be kept, they must either be
// selected or contain some nodes that are.
//
// For simple cases (not inside macros) we prune subtrees that don't intersect.
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
public:
// Runs the visitor to gather selected nodes and their ancestors.
// If there is any selection, the root (TUDecl) is the first node.
static std::deque<Node> collect(ASTContext &AST, unsigned Begin,
unsigned End, FileID File) {
SelectionVisitor V(AST, Begin, End, File);
V.TraverseAST(AST);
assert(V.Stack.size() == 1 && "Unpaired push/pop?");
assert(V.Stack.top() == &V.Nodes.front());
if (V.Nodes.size() == 1) // TUDecl, but no nodes under it.
V.Nodes.clear();
return std::move(V.Nodes);
}
// We traverse all "well-behaved" nodes the same way:
// - push the node onto the stack
// - traverse its children recursively
// - pop it from the stack
// - hit testing: is intersection(node, selection) - union(children) empty?
// - attach it to the tree if it or any children hit the selection
//
// Two categories of nodes are not "well-behaved":
// - those without source range information, we don't record those
// - those that can't be stored in DynTypedNode.
// We're missing some interesting things like Attr due to the latter.
bool TraverseDecl(Decl *X) {
if (isa<TranslationUnitDecl>(X))
return Base::TraverseDecl(X); // Already pushed by constructor.
return traverseNode(X, [&] { return Base::TraverseDecl(X); });
}
bool TraverseTypeLoc(TypeLoc X) {
return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
}
bool TraverseTypeNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
return traverseNode(
&X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
}
bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
return traverseNode(
X, [&] { return Base::TraverseConstructorInitializer(X); });
}
// Stmt is the same, but this form allows the data recursion optimization.
bool dataTraverseStmtPre(Stmt *X) {
if (!X || canSafelySkipNode(X->getSourceRange()))
return false;
push(DynTypedNode::create(*X));
return true;
}
bool dataTraverseStmtPost(Stmt *X) {
pop();
return true;
}
// Uninteresting parts of the AST that don't have locations within them.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
bool TraverseType(QualType) { return true; }
private:
using Base = RecursiveASTVisitor<SelectionVisitor>;
SelectionVisitor(ASTContext &AST, unsigned SelBegin, unsigned SelEnd,
FileID SelFile)
: SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
SelBegin(SelBegin), SelEnd(SelEnd), SelFile(SelFile),
SelBeginTokenStart(SM.getFileOffset(Lexer::GetBeginningOfToken(
SM.getComposedLoc(SelFile, SelBegin), SM, LangOpts))) {
// Ensure we have a node for the TU decl, regardless of traversal scope.
Nodes.emplace_back();
Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
Nodes.back().Parent = nullptr;
Nodes.back().Selected = SelectionTree::Unselected;
Stack.push(&Nodes.back());
}
// Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
// Node is always a pointer so the generic code can handle any null checks.
template <typename T, typename Func>
bool traverseNode(T *Node, const Func &Body) {
if (Node == nullptr || canSafelySkipNode(Node->getSourceRange()))
return true;
push(DynTypedNode::create(*Node));
bool Ret = Body();
pop();
return Ret;
}
// An optimization for a common case: nodes outside macro expansions that
// don't intersect the selection may be recursively skipped.
bool canSafelySkipNode(SourceRange S) {
auto B = SM.getDecomposedLoc(S.getBegin());
auto E = SM.getDecomposedLoc(S.getEnd());
if (B.first != SelFile || E.first != SelFile)
return false;
return B.second >= SelEnd || E.second < SelBeginTokenStart;
}
// Pushes a node onto the ancestor stack. Pairs with pop().
void push(DynTypedNode Node) {
Nodes.emplace_back();
Nodes.back().ASTNode = std::move(Node);
Nodes.back().Parent = Stack.top();
Nodes.back().Selected = SelectionTree::Unselected;
Stack.push(&Nodes.back());
}
// Pops a node off the ancestor stack, and finalizes it. Pairs with push().
void pop() {
Node &N = *Stack.top();
N.Selected = computeSelection(N);
if (N.Selected || !N.Children.empty()) {
// Attach to the tree.
N.Parent->Children.push_back(&N);
} else {
// Neither N any children are selected, it doesn't belong in the tree.
assert(&N == &Nodes.back());
Nodes.pop_back();
}
Stack.pop();
}
// Perform hit-testing of a complete Node against the selection.
// This runs for every node in the AST, and must be fast in common cases.
// This is called from pop(), so we can take children into account.
SelectionTree::Selection computeSelection(const Node &N) {
SourceRange S = N.ASTNode.getSourceRange();
if (!S.isValid())
return SelectionTree::Unselected;
// getTopMacroCallerLoc() allows selection of constructs in macro args. e.g:
// #define LOOP_FOREVER(Body) for(;;) { Body }
// void IncrementLots(int &x) {
// LOOP_FOREVER( ++x; )
// }
// Selecting "++x" or "x" will do the right thing.
auto B = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getBegin()));
auto E = SM.getDecomposedLoc(SM.getTopMacroCallerLoc(S.getEnd()));
// Otherwise, nodes in macro expansions can't be selected.
if (B.first != SelFile || E.first != SelFile)
return SelectionTree::Unselected;
// Cheap test: is there any overlap at all between the selection and range?
// Note that E.second is the *start* of the last token, which is why we
// compare against the "rounded-down" SelBegin.
if (B.second >= SelEnd || E.second < SelBeginTokenStart)
return SelectionTree::Unselected;
// We hit something, need some more precise checks.
// Adjust [B, E) to be a half-open character range.
E.second += Lexer::MeasureTokenLength(S.getEnd(), SM, LangOpts);
// This node's own selected text is (this range ^ selection) - child ranges.
// If that's empty, then we've only collided with children.
if (nodesCoverRange(N.Children, std::max(SelBegin, B.second),
std::min(SelEnd, E.second)))
return SelectionTree::Unselected; // Hit children only.
// Some of our own characters are covered, this is a true hit.
return (B.second >= SelBegin && E.second <= SelEnd)
? SelectionTree::Complete
: SelectionTree::Partial;
}
// Is the range [Begin, End) entirely covered by the union of the Nodes?
// (The range is a parent node's extent, and the covering nodes are children).
bool nodesCoverRange(llvm::ArrayRef<const Node *> Nodes, unsigned Begin,
unsigned End) {
if (Begin >= End)
return true;
if (Nodes.empty())
return false;
// Collect all the expansion ranges, as offsets.
SmallVector<std::pair<unsigned, unsigned>, 8> ChildRanges;
for (const Node *N : Nodes) {
CharSourceRange R = SM.getExpansionRange(N->ASTNode.getSourceRange());
auto B = SM.getDecomposedLoc(R.getBegin());
auto E = SM.getDecomposedLoc(R.getEnd());
if (B.first != SelFile || E.first != SelFile)
continue;
assert(R.isTokenRange());
// Try to cover up to the next token, spaces between children don't count.
if (auto Tok = Lexer::findNextToken(R.getEnd(), SM, LangOpts))
E.second = SM.getFileOffset(Tok->getLocation());
else
E.second += Lexer::MeasureTokenLength(R.getEnd(), SM, LangOpts);
ChildRanges.push_back({B.second, E.second});
}
llvm::sort(ChildRanges);
// Scan through the child ranges, removing as we go.
for (const auto R : ChildRanges) {
if (R.first > Begin)
return false; // [Begin, R.first) is not covered.
Begin = R.second; // Eliminate [R.first, R.second).
if (Begin >= End)
return true; // Remaining range is empty.
}
return false; // Went through all children, trailing characters remain.
}
SourceManager &SM;
const LangOptions &LangOpts;
std::stack<Node *> Stack;
std::deque<Node> Nodes; // Stable pointers as we add more nodes.
// Half-open selection range.
unsigned SelBegin;
unsigned SelEnd;
FileID SelFile;
// If the selection start slices a token in half, the beginning of that token.
// This is useful for checking whether the end of a token range overlaps
// the selection: range.end < SelBeginTokenStart is equivalent to
// range.end + measureToken(range.end) < SelBegin (assuming range.end points
// to a token), and it saves a lex every time.
unsigned SelBeginTokenStart;
};
} // namespace
void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
int Indent) const {
if (N.Selected)
OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
: '.');
else
OS.indent(Indent);
OS << N.ASTNode.getNodeKind().asStringRef() << " ";
N.ASTNode.print(OS, PrintPolicy);
OS << "\n";
for (const Node *Child : N.Children)
print(OS, *Child, Indent + 2);
}
// Decide which selection emulates a "point" query in between characters.
static std::pair<unsigned, unsigned> pointBounds(unsigned Offset, FileID FID,
ASTContext &AST) {
StringRef Buf = AST.getSourceManager().getBufferData(FID);
// Edge-cases where the choice is forced.
if (Buf.size() == 0)
return {0, 0};
if (Offset == 0)
return {0, 1};
if (Offset == Buf.size())
return {Offset - 1, Offset};
// We could choose either this byte or the previous. Usually we prefer the
// character on the right of the cursor (or under a block cursor).
// But if that's whitespace, we likely want the token on the left.
if (isWhitespace(Buf[Offset]) && !isWhitespace(Buf[Offset - 1]))
return {Offset - 1, Offset};
return {Offset, Offset + 1};
}
SelectionTree::SelectionTree(ASTContext &AST, unsigned Begin, unsigned End)
: PrintPolicy(AST.getLangOpts()) {
// No fundamental reason the selection needs to be in the main file,
// but that's all clangd has needed so far.
FileID FID = AST.getSourceManager().getMainFileID();
if (Begin == End)
std::tie(Begin, End) = pointBounds(Begin, FID, AST);
PrintPolicy.TerseOutput = true;
Nodes = SelectionVisitor::collect(AST, Begin, End, FID);
Root = Nodes.empty() ? nullptr : &Nodes.front();
}
SelectionTree::SelectionTree(ASTContext &AST, unsigned Offset)
: SelectionTree(AST, Offset, Offset) {}
const Node *SelectionTree::commonAncestor() const {
if (!Root)
return nullptr;
for (const Node *Ancestor = Root;; Ancestor = Ancestor->Children.front()) {
if (Ancestor->Selected || Ancestor->Children.size() > 1)
return Ancestor;
// The tree only contains ancestors of the interesting nodes.
assert(!Ancestor->Children.empty() && "bad node in selection tree");
}
}
} // namespace clangd
} // namespace clang

View File

@ -0,0 +1,123 @@
//===--- Selection.h - What's under the cursor? -------------------*-C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Many features are triggered at locations/ranges and operate on AST nodes.
// (e.g. go-to-definition or code tweaks).
// At a high level, such features need to work out which node is the correct
// target.
//
// There are a few levels of ambiguity here:
//
// Which tokens are included:
// int x = one + two; // what should "go to definition" do?
// ^^^^^^
//
// Same token means multiple things:
// string("foo") // class string, or a constructor?
// ^
//
// Which level of the AST is interesting?
// if (err) { // reference to 'err', or operator bool(),
// ^ // or the if statement itself?
//
// Here we build and expose a data structure that allows features to resolve
// these ambiguities in an appropriate way:
// - we determine which low-level nodes are partly or completely covered
// by the selection.
// - we expose a tree of the selected nodes and their lexical parents.
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_TOOLS_EXTRA_CLANGD_SELECTION_H
#define LLVM_CLANG_TOOLS_EXTRA_CLANGD_SELECTION_H
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/PrettyPrinter.h"
#include "llvm/ADT/SmallVector.h"
namespace clang {
namespace clangd {
class ParsedAST;
// A selection can partially or completely cover several AST nodes.
// The SelectionTree contains nodes that are covered, and their parents.
// SelectionTree does not contain all AST nodes, rather only:
// Decl, Stmt, TypeLoc, NestedNamespaceSpecifierLoc, CXXCtorInitializer.
// (These are the nodes with source ranges that fit in DynTypedNode).
//
// Usually commonAncestor() is the place to start:
// - it's the simplest answer to "what node is under the cursor"
// - the selected Expr (for example) can be found by walking up the parent
// chain and checking Node->ASTNode.
// - if you want to traverse the selected nodes, they are all under
// commonAncestor() in the tree.
//
// The SelectionTree owns the Node structures, but the ASTNode attributes
// point back into the AST it was constructed with.
class SelectionTree {
public:
// Creates a selection tree at the given byte offset in the main file.
// This is approximately equivalent to a range of one character.
// (Usually, the character to the right of Offset, sometimes to the left).
SelectionTree(ASTContext &AST, unsigned Offset);
// Creates a selection tree for the given range in the main file.
// The range includes bytes [Start, End).
// If Start == End, uses the same heuristics as SelectionTree(AST, Start).
SelectionTree(ASTContext &AST, unsigned Start, unsigned End);
// Describes to what extent an AST node is covered by the selection.
enum Selection {
// The AST node owns no characters covered by the selection.
// Note that characters owned by children don't count:
// if (x == 0) scream();
// ^^^^^^
// The IfStmt would be Unselected because all the selected characters are
// associated with its children.
// (Invisible nodes like ImplicitCastExpr are always unselected).
Unselected,
// The AST node owns selected characters, but is not completely covered.
Partial,
// The AST node owns characters, and is covered by the selection.
Complete,
};
// An AST node that is implicated in the selection.
// (Either selected directly, or some descendant is selected).
struct Node {
// The parent within the selection tree. nullptr for TranslationUnitDecl.
Node *Parent;
// Direct children within the selection tree.
llvm::SmallVector<const Node *, 8> Children;
// The corresponding node from the full AST.
ast_type_traits::DynTypedNode ASTNode;
// The extent to which this node is covered by the selection.
Selection Selected;
};
// The most specific common ancestor of all the selected nodes.
// If there is no selection, this is nullptr.
const Node *commonAncestor() const;
// The selection node corresponding to TranslationUnitDecl.
// If there is no selection, this is nullptr.
const Node *root() const { return Root; }
private:
std::deque<Node> Nodes; // Stable-pointer storage.
const Node *Root;
clang::PrintingPolicy PrintPolicy;
void print(llvm::raw_ostream &OS, const Node &N, int Indent) const;
friend llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const SelectionTree &T) {
if (auto R = T.root())
T.print(OS, *R, 0);
else
OS << "(empty selection)\n";
return OS;
}
};
} // namespace clangd
} // namespace clang
#endif

View File

@ -34,6 +34,7 @@ add_extra_unittest(ClangdTests
JSONTransportTests.cpp
QualityTests.cpp
RIFFTests.cpp
SelectionTests.cpp
SerializationTests.cpp
SourceCodeTests.cpp
SymbolCollectorTests.cpp

View File

@ -0,0 +1,244 @@
//===-- RIFFTests.cpp - Binary container unit tests -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Annotations.h"
#include "Selection.h"
#include "SourceCode.h"
#include "TestTU.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace clang {
namespace clangd {
namespace {
using ::testing::UnorderedElementsAreArray;
SelectionTree makeSelectionTree(const StringRef MarkedCode, ParsedAST &AST) {
Annotations Test(MarkedCode);
switch (Test.points().size()) {
case 1: // Point selection.
return SelectionTree(AST.getASTContext(),
cantFail(positionToOffset(Test.code(), Test.point())));
case 2: // Range selection.
return SelectionTree(
AST.getASTContext(),
cantFail(positionToOffset(Test.code(), Test.points()[0])),
cantFail(positionToOffset(Test.code(), Test.points()[1])));
default:
ADD_FAILURE() << "Expected 1-2 points for selection.\n" << MarkedCode;
return SelectionTree(AST.getASTContext(), 0u, 0u);
}
}
Range nodeRange(const SelectionTree::Node *N, ParsedAST &AST) {
if (!N)
return Range{};
SourceManager &SM = AST.getASTContext().getSourceManager();
StringRef Buffer = SM.getBufferData(SM.getMainFileID());
SourceRange SR = N->ASTNode.getSourceRange();
SR.setBegin(SM.getFileLoc(SR.getBegin()));
SR.setEnd(SM.getFileLoc(SR.getEnd()));
CharSourceRange R =
Lexer::getAsCharRange(SR, SM, AST.getASTContext().getLangOpts());
return Range{offsetToPosition(Buffer, SM.getFileOffset(R.getBegin())),
offsetToPosition(Buffer, SM.getFileOffset(R.getEnd()) + 1)};
}
std::string nodeKind(const SelectionTree::Node *N) {
if (!N)
return "<null>";
return N->ASTNode.getNodeKind().asStringRef().str();
}
std::vector<const SelectionTree::Node *> allNodes(const SelectionTree &T) {
std::vector<const SelectionTree::Node *> Result = {T.root()};
for (unsigned I = 0; I < Result.size(); ++I) {
const SelectionTree::Node *N = Result[I];
Result.insert(Result.end(), N->Children.begin(), N->Children.end());
}
return Result;
}
// Returns true if Common is a descendent of Root.
// Verifies nothing is selected above Common.
bool verifyCommonAncestor(const SelectionTree::Node *Root,
const SelectionTree::Node *Common,
StringRef MarkedCode) {
if (Root == Common)
return true;
if (Root->Selected)
ADD_FAILURE() << "Selected nodes outside common ancestor\n" << MarkedCode;
bool Seen = false;
for (const SelectionTree::Node *Child : Root->Children)
if (verifyCommonAncestor(Child, Common, MarkedCode)) {
if (Seen)
ADD_FAILURE() << "Saw common ancestor twice\n" << MarkedCode;
Seen = true;
}
return Seen;
}
TEST(SelectionTest, CommonAncestor) {
struct Case {
// Selection is between ^marks^.
// common ancestor marked with a [[range]].
const char *Code;
const char *CommonAncestorKind;
};
Case Cases[] = {
{
R"cpp(
struct AAA { struct BBB { static int ccc(); };};
int x = AAA::[[B^B^B]]::ccc();
)cpp",
"TypeLoc",
},
{
R"cpp(
struct AAA { struct BBB { static int ccc(); };};
int x = AAA::[[B^BB^]]::ccc();
)cpp",
"TypeLoc",
},
{
R"cpp(
struct AAA { struct BBB { static int ccc(); };};
int x = [[AAA::BBB::c^c^c]]();
)cpp",
"DeclRefExpr",
},
{
R"cpp(
struct AAA { struct BBB { static int ccc(); };};
int x = [[AAA::BBB::cc^c(^)]];
)cpp",
"CallExpr",
},
{
R"cpp(
void foo() { [[if (1^11) { return; } else {^ }]] }
)cpp",
"IfStmt",
},
{
R"cpp(
void foo();
#define CALL_FUNCTION(X) X()
void bar() { CALL_FUNCTION([[f^o^o]]); }
)cpp",
"DeclRefExpr",
},
{
R"cpp(
void foo();
#define CALL_FUNCTION(X) X()
void bar() { CALL_FUNC^TION([[fo^o]]); }
)cpp",
"DeclRefExpr",
},
{
R"cpp(
void foo();
#define CALL_FUNCTION(X) X()
void bar() [[{ C^ALL_FUNC^TION(foo); }]]
)cpp",
"CompoundStmt",
},
{
R"cpp(
void foo();
#define CALL_FUNCTION(X) X^()^
void bar() { CALL_FUNCTION(foo); }
)cpp",
nullptr,
},
// Point selections.
{"void foo() { [[^foo]](); }", "DeclRefExpr"},
{"void foo() { [[f^oo]](); }", "DeclRefExpr"},
{"void foo() { [[fo^o]](); }", "DeclRefExpr"},
{"void foo() { [[foo^()]]; }", "CallExpr"},
{"void foo() { [[foo^]] (); }", "DeclRefExpr"},
{"int bar; void foo() [[{ foo (); }]]^", "CompoundStmt"},
{"[[^void]] foo();", "TypeLoc"},
{"^", nullptr},
{"void foo() { [[foo^^]] (); }", "DeclRefExpr"},
// FIXME: Ideally we'd get a declstmt or the VarDecl itself here.
// This doesn't happen now; the RAV doesn't traverse a node containing ;.
{"int x = 42;^", nullptr},
{"int x = 42^;", nullptr},
// Node types that have caused problems in the past.
{"template <typename T> void foo() { [[^T]] t; }", "TypeLoc"},
};
for (const Case &C : Cases) {
Annotations Test(C.Code);
auto AST = TestTU::withCode(Test.code()).build();
auto T = makeSelectionTree(C.Code, AST);
if (Test.ranges().empty()) {
// If no [[range]] is marked in the example, there should be no selection.
EXPECT_FALSE(T.commonAncestor()) << C.Code << "\n" << T;
EXPECT_FALSE(T.root()) << C.Code << "\n" << T;
} else {
// If there is an expected selection, both common ancestor and root
// should exist with the appropriate node types in them.
EXPECT_EQ(C.CommonAncestorKind, nodeKind(T.commonAncestor()))
<< C.Code << "\n"
<< T;
EXPECT_EQ("TranslationUnitDecl", nodeKind(T.root())) << C.Code;
// Convert the reported common ancestor to a range and verify it.
EXPECT_EQ(nodeRange(T.commonAncestor(), AST), Test.range())
<< C.Code << "\n"
<< T;
// Check that common ancestor is reachable on exactly one path from root,
// and no nodes outside it are selected.
EXPECT_TRUE(verifyCommonAncestor(T.root(), T.commonAncestor(), C.Code))
<< C.Code;
}
}
}
TEST(SelectionTest, Selected) {
// Selection with ^marks^.
// Partially selected nodes marked with a [[range]].
// Completely selected nodes marked with a $C[[range]].
const char *Cases[] = {
R"cpp( int abc, xyz = [[^ab^c]]; )cpp",
R"cpp( int abc, xyz = [[a^bc^]]; )cpp",
R"cpp( int abc, xyz = $C[[^abc^]]; )cpp",
R"cpp(
void foo() {
[[if ([[1^11]]) $C[[{
$C[[return]];
}]] else [[{^
}]]]]
}
)cpp",
};
for (const char *C : Cases) {
Annotations Test(C);
auto AST = TestTU::withCode(Test.code()).build();
auto T = makeSelectionTree(C, AST);
std::vector<Range> Complete, Partial;
for (const SelectionTree::Node *N : allNodes(T))
if (N->Selected == SelectionTree::Complete)
Complete.push_back(nodeRange(N, AST));
else if (N->Selected == SelectionTree::Partial)
Partial.push_back(nodeRange(N, AST));
EXPECT_THAT(Complete, UnorderedElementsAreArray(Test.ranges("C"))) << C;
EXPECT_THAT(Partial, UnorderedElementsAreArray(Test.ranges())) << C;
}
}
} // namespace
} // namespace clangd
} // namespace clang