forked from OSchip/llvm-project
Reapply r215966, r215965, r215964, r215963, r215960, r215959, r215958, and r215957
This reverts commit r215981, which reverted the above commits because MSVC std::equal asserts on nullptr iterators, and thes commits introduced an `ArrayRef::equals()` on empty ArrayRefs. ArrayRef was changed not to use std::equal in r215986. llvm-svn: 215987
This commit is contained in:
parent
16bec8e667
commit
317c139f23
|
@ -48,6 +48,8 @@ protected:
|
|||
: User(ty, vty, Ops, NumOps) {}
|
||||
|
||||
void destroyConstantImpl();
|
||||
void replaceUsesOfWithOnConstantImpl(Constant *Replacement);
|
||||
|
||||
public:
|
||||
/// isNullValue - Return true if this is the value that would be returned by
|
||||
/// getNullValue.
|
||||
|
|
|
@ -37,12 +37,8 @@ class PointerType;
|
|||
class VectorType;
|
||||
class SequentialType;
|
||||
|
||||
template<class ConstantClass, class TypeClass, class ValType>
|
||||
struct ConstantCreator;
|
||||
template<class ConstantClass, class TypeClass>
|
||||
struct ConstantArrayCreator;
|
||||
template<class ConstantClass, class TypeClass>
|
||||
struct ConvertConstantType;
|
||||
struct ConstantExprKeyType;
|
||||
template <class ConstantClass> struct ConstantAggrKeyType;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// This is the shared class of boolean and integer constants. This class
|
||||
|
@ -338,7 +334,7 @@ public:
|
|||
/// ConstantArray - Constant Array Declarations
|
||||
///
|
||||
class ConstantArray : public Constant {
|
||||
friend struct ConstantArrayCreator<ConstantArray, ArrayType>;
|
||||
friend struct ConstantAggrKeyType<ConstantArray>;
|
||||
ConstantArray(const ConstantArray &) LLVM_DELETED_FUNCTION;
|
||||
protected:
|
||||
ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
|
||||
|
@ -346,6 +342,10 @@ public:
|
|||
// ConstantArray accessors
|
||||
static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
|
||||
|
||||
private:
|
||||
static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
|
||||
|
||||
public:
|
||||
/// Transparently provide more efficient getOperand methods.
|
||||
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
||||
|
||||
|
@ -376,7 +376,7 @@ DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
|
|||
// ConstantStruct - Constant Struct Declarations
|
||||
//
|
||||
class ConstantStruct : public Constant {
|
||||
friend struct ConstantArrayCreator<ConstantStruct, StructType>;
|
||||
friend struct ConstantAggrKeyType<ConstantStruct>;
|
||||
ConstantStruct(const ConstantStruct &) LLVM_DELETED_FUNCTION;
|
||||
protected:
|
||||
ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
|
||||
|
@ -435,7 +435,7 @@ DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
|
|||
/// ConstantVector - Constant Vector Declarations
|
||||
///
|
||||
class ConstantVector : public Constant {
|
||||
friend struct ConstantArrayCreator<ConstantVector, VectorType>;
|
||||
friend struct ConstantAggrKeyType<ConstantVector>;
|
||||
ConstantVector(const ConstantVector &) LLVM_DELETED_FUNCTION;
|
||||
protected:
|
||||
ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
|
||||
|
@ -443,6 +443,10 @@ public:
|
|||
// ConstantVector accessors
|
||||
static Constant *get(ArrayRef<Constant*> V);
|
||||
|
||||
private:
|
||||
static Constant *getImpl(ArrayRef<Constant *> V);
|
||||
|
||||
public:
|
||||
/// getSplat - Return a ConstantVector with the specified constant in each
|
||||
/// element.
|
||||
static Constant *getSplat(unsigned NumElts, Constant *Elt);
|
||||
|
@ -794,9 +798,7 @@ DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
|
|||
/// constant expressions. The Opcode field for the ConstantExpr class is
|
||||
/// maintained in the Value::SubclassData field.
|
||||
class ConstantExpr : public Constant {
|
||||
friend struct ConstantCreator<ConstantExpr,Type,
|
||||
std::pair<unsigned, std::vector<Constant*> > >;
|
||||
friend struct ConvertConstantType<ConstantExpr, Type>;
|
||||
friend struct ConstantExprKeyType;
|
||||
|
||||
protected:
|
||||
ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
|
||||
|
@ -1113,6 +1115,12 @@ private:
|
|||
void setValueSubclassData(unsigned short D) {
|
||||
Value::setValueSubclassData(D);
|
||||
}
|
||||
|
||||
/// \brief Check whether this can become its replacement.
|
||||
///
|
||||
/// For use during \a replaceUsesOfWithOnConstant(), check whether we know
|
||||
/// how to turn this into \a Replacement, thereby reducing RAUW traffic.
|
||||
bool canBecomeReplacement(const Constant *Replacement) const;
|
||||
};
|
||||
|
||||
template <>
|
||||
|
|
|
@ -25,12 +25,9 @@ namespace llvm {
|
|||
class PointerType;
|
||||
class FunctionType;
|
||||
class Module;
|
||||
|
||||
struct InlineAsmKeyType;
|
||||
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
|
||||
bool HasLargeKey>
|
||||
class ConstantUniqueMap;
|
||||
template<class ConstantClass, class TypeClass, class ValType>
|
||||
struct ConstantCreator;
|
||||
template <class ConstantClass> class ConstantUniqueMap;
|
||||
|
||||
class InlineAsm : public Value {
|
||||
public:
|
||||
|
@ -40,9 +37,8 @@ public:
|
|||
};
|
||||
|
||||
private:
|
||||
friend struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType>;
|
||||
friend class ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&,
|
||||
PointerType, InlineAsm, false>;
|
||||
friend struct InlineAsmKeyType;
|
||||
friend class ConstantUniqueMap<InlineAsm>;
|
||||
|
||||
InlineAsm(const InlineAsm &) LLVM_DELETED_FUNCTION;
|
||||
void operator=(const InlineAsm&) LLVM_DELETED_FUNCTION;
|
||||
|
|
|
@ -803,6 +803,11 @@ ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
|
|||
}
|
||||
|
||||
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
|
||||
if (Constant *C = getImpl(Ty, V))
|
||||
return C;
|
||||
return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
|
||||
}
|
||||
Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
|
||||
// Empty arrays are canonicalized to ConstantAggregateZero.
|
||||
if (V.empty())
|
||||
return ConstantAggregateZero::get(Ty);
|
||||
|
@ -811,7 +816,6 @@ Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
|
|||
assert(V[i]->getType() == Ty->getElementType() &&
|
||||
"Wrong type in array element initializer");
|
||||
}
|
||||
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
|
||||
|
||||
// If this is an all-zero array, return a ConstantAggregateZero object. If
|
||||
// all undef, return an UndefValue, if "all simple", then return a
|
||||
|
@ -893,7 +897,7 @@ Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
|
|||
}
|
||||
|
||||
// Otherwise, we really do want to create a ConstantArray.
|
||||
return pImpl->ArrayConstants.getOrCreate(Ty, V);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// getTypeForElements - Return an anonymous struct type to use for a constant
|
||||
|
@ -981,9 +985,14 @@ ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
|
|||
|
||||
// ConstantVector accessors.
|
||||
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
|
||||
if (Constant *C = getImpl(V))
|
||||
return C;
|
||||
VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
|
||||
return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
|
||||
}
|
||||
Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
|
||||
assert(!V.empty() && "Vectors can't be empty");
|
||||
VectorType *T = VectorType::get(V.front()->getType(), V.size());
|
||||
LLVMContextImpl *pImpl = T->getContext().pImpl;
|
||||
|
||||
// If this is an all-undef or all-zero vector, return a
|
||||
// ConstantAggregateZero or UndefValue.
|
||||
|
@ -1075,7 +1084,7 @@ Constant *ConstantVector::get(ArrayRef<Constant*> V) {
|
|||
|
||||
// Otherwise, the element type isn't compatible with ConstantDataVector, or
|
||||
// the operand list constants a ConstantExpr or something else strange.
|
||||
return pImpl->VectorConstants.getOrCreate(T, V);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
|
||||
|
@ -1469,27 +1478,21 @@ void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
|
|||
// and return early.
|
||||
BlockAddress *&NewBA =
|
||||
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
|
||||
if (!NewBA) {
|
||||
getBasicBlock()->AdjustBlockAddressRefCount(-1);
|
||||
|
||||
// Remove the old entry, this can't cause the map to rehash (just a
|
||||
// tombstone will get added).
|
||||
getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
|
||||
getBasicBlock()));
|
||||
NewBA = this;
|
||||
setOperand(0, NewF);
|
||||
setOperand(1, NewBB);
|
||||
getBasicBlock()->AdjustBlockAddressRefCount(1);
|
||||
if (NewBA) {
|
||||
replaceUsesOfWithOnConstantImpl(NewBA);
|
||||
return;
|
||||
}
|
||||
|
||||
// Otherwise, I do need to replace this with an existing value.
|
||||
assert(NewBA != this && "I didn't contain From!");
|
||||
getBasicBlock()->AdjustBlockAddressRefCount(-1);
|
||||
|
||||
// Everyone using this now uses the replacement.
|
||||
replaceAllUsesWith(NewBA);
|
||||
|
||||
destroyConstant();
|
||||
// Remove the old entry, this can't cause the map to rehash (just a
|
||||
// tombstone will get added).
|
||||
getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
|
||||
getBasicBlock()));
|
||||
NewBA = this;
|
||||
setOperand(0, NewF);
|
||||
setOperand(1, NewBB);
|
||||
getBasicBlock()->AdjustBlockAddressRefCount(1);
|
||||
}
|
||||
|
||||
//---- ConstantExpr::get() implementations.
|
||||
|
@ -1507,7 +1510,7 @@ static inline Constant *getFoldedCast(
|
|||
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
|
||||
|
||||
// Look up the constant in the table first to ensure uniqueness.
|
||||
ExprMapKeyType Key(opc, C);
|
||||
ConstantExprKeyType Key(opc, C);
|
||||
|
||||
return pImpl->ExprConstants.getOrCreate(Ty, Key);
|
||||
}
|
||||
|
@ -1842,7 +1845,7 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
|
|||
return FC; // Fold a few common cases.
|
||||
|
||||
Constant *ArgVec[] = { C1, C2 };
|
||||
ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
|
||||
ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
|
||||
|
||||
LLVMContextImpl *pImpl = C1->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
|
||||
|
@ -1919,7 +1922,7 @@ Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
|
|||
return SC; // Fold common cases
|
||||
|
||||
Constant *ArgVec[] = { C, V1, V2 };
|
||||
ExprMapKeyType Key(Instruction::Select, ArgVec);
|
||||
ConstantExprKeyType Key(Instruction::Select, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = C->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
|
||||
|
@ -1954,8 +1957,8 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
|
|||
"getelementptr index type missmatch");
|
||||
ArgVec.push_back(cast<Constant>(Idxs[i]));
|
||||
}
|
||||
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
|
||||
InBounds ? GEPOperator::IsInBounds : 0);
|
||||
const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
|
||||
InBounds ? GEPOperator::IsInBounds : 0);
|
||||
|
||||
LLVMContextImpl *pImpl = C->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
||||
|
@ -1973,7 +1976,7 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
|
|||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { LHS, RHS };
|
||||
// Get the key type with both the opcode and predicate
|
||||
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
|
||||
const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
|
||||
|
||||
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
|
||||
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
|
||||
|
@ -1994,7 +1997,7 @@ ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
|
|||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { LHS, RHS };
|
||||
// Get the key type with both the opcode and predicate
|
||||
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
|
||||
const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
|
||||
|
||||
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
|
||||
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
|
||||
|
@ -2015,7 +2018,7 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
|
|||
|
||||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { Val, Idx };
|
||||
const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
|
||||
const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = Val->getContext().pImpl;
|
||||
Type *ReqTy = Val->getType()->getVectorElementType();
|
||||
|
@ -2035,7 +2038,7 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
|
|||
return FC; // Fold a few common cases.
|
||||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { Val, Elt, Idx };
|
||||
const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
|
||||
const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = Val->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
|
||||
|
@ -2055,7 +2058,7 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
|
|||
|
||||
// Look up the constant in the table first to ensure uniqueness
|
||||
Constant *ArgVec[] = { V1, V2, Mask };
|
||||
const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
|
||||
const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
|
||||
|
||||
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
|
||||
|
@ -2075,7 +2078,7 @@ Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
|
|||
return FC;
|
||||
|
||||
Constant *ArgVec[] = { Agg, Val };
|
||||
const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
|
||||
const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
|
||||
|
||||
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
||||
|
@ -2096,7 +2099,7 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg,
|
|||
return FC;
|
||||
|
||||
Constant *ArgVec[] = { Agg };
|
||||
const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
|
||||
const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
|
||||
|
||||
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
|
||||
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
|
||||
|
@ -2652,6 +2655,17 @@ Constant *ConstantDataVector::getSplatValue() const {
|
|||
/// work, but would be really slow because it would have to unique each updated
|
||||
/// array instance.
|
||||
///
|
||||
void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
|
||||
// I do need to replace this with an existing value.
|
||||
assert(Replacement != this && "I didn't contain From!");
|
||||
|
||||
// Everyone using this now uses the replacement.
|
||||
replaceAllUsesWith(Replacement);
|
||||
|
||||
// Delete the old constant!
|
||||
destroyConstant();
|
||||
}
|
||||
|
||||
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
||||
Use *U) {
|
||||
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
||||
|
@ -2678,52 +2692,51 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|||
AllSame &= Val == ToC;
|
||||
}
|
||||
|
||||
Constant *Replacement = nullptr;
|
||||
if (AllSame && ToC->isNullValue()) {
|
||||
Replacement = ConstantAggregateZero::get(getType());
|
||||
} else if (AllSame && isa<UndefValue>(ToC)) {
|
||||
Replacement = UndefValue::get(getType());
|
||||
} else {
|
||||
// Check to see if we have this array type already.
|
||||
LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup(
|
||||
cast<ArrayType>(getType()), makeArrayRef(Values));
|
||||
LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
|
||||
pImpl->ArrayConstants.find(Lookup);
|
||||
|
||||
if (I != pImpl->ArrayConstants.map_end()) {
|
||||
Replacement = I->first;
|
||||
} else {
|
||||
// Okay, the new shape doesn't exist in the system yet. Instead of
|
||||
// creating a new constant array, inserting it, replaceallusesof'ing the
|
||||
// old with the new, then deleting the old... just update the current one
|
||||
// in place!
|
||||
pImpl->ArrayConstants.remove(this);
|
||||
|
||||
// Update to the new value. Optimize for the case when we have a single
|
||||
// operand that we're changing, but handle bulk updates efficiently.
|
||||
if (NumUpdated == 1) {
|
||||
unsigned OperandToUpdate = U - OperandList;
|
||||
assert(getOperand(OperandToUpdate) == From &&
|
||||
"ReplaceAllUsesWith broken!");
|
||||
setOperand(OperandToUpdate, ToC);
|
||||
} else {
|
||||
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
||||
if (getOperand(i) == From)
|
||||
setOperand(i, ToC);
|
||||
}
|
||||
pImpl->ArrayConstants.insert(this);
|
||||
return;
|
||||
}
|
||||
replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
|
||||
return;
|
||||
}
|
||||
if (AllSame && isa<UndefValue>(ToC)) {
|
||||
replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
|
||||
return;
|
||||
}
|
||||
|
||||
// Otherwise, I do need to replace this with an existing value.
|
||||
assert(Replacement != this && "I didn't contain From!");
|
||||
// Check for any other type of constant-folding.
|
||||
if (Constant *C = getImpl(getType(), Values)) {
|
||||
replaceUsesOfWithOnConstantImpl(C);
|
||||
return;
|
||||
}
|
||||
|
||||
// Everyone using this now uses the replacement.
|
||||
replaceAllUsesWith(Replacement);
|
||||
// Check to see if we have this array type already.
|
||||
LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup(
|
||||
cast<ArrayType>(getType()), makeArrayRef(Values));
|
||||
LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
|
||||
pImpl->ArrayConstants.find(Lookup);
|
||||
|
||||
// Delete the old constant!
|
||||
destroyConstant();
|
||||
if (I != pImpl->ArrayConstants.map_end()) {
|
||||
replaceUsesOfWithOnConstantImpl(I->first);
|
||||
return;
|
||||
}
|
||||
|
||||
// Okay, the new shape doesn't exist in the system yet. Instead of
|
||||
// creating a new constant array, inserting it, replaceallusesof'ing the
|
||||
// old with the new, then deleting the old... just update the current one
|
||||
// in place!
|
||||
pImpl->ArrayConstants.remove(this);
|
||||
|
||||
// Update to the new value. Optimize for the case when we have a single
|
||||
// operand that we're changing, but handle bulk updates efficiently.
|
||||
if (NumUpdated == 1) {
|
||||
unsigned OperandToUpdate = U - OperandList;
|
||||
assert(getOperand(OperandToUpdate) == From &&
|
||||
"ReplaceAllUsesWith broken!");
|
||||
setOperand(OperandToUpdate, ToC);
|
||||
} else {
|
||||
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
|
||||
if (getOperand(I) == From)
|
||||
setOperand(I, ToC);
|
||||
}
|
||||
pImpl->ArrayConstants.insert(this);
|
||||
}
|
||||
|
||||
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
||||
|
@ -2763,63 +2776,75 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
|||
|
||||
LLVMContextImpl *pImpl = getContext().pImpl;
|
||||
|
||||
Constant *Replacement = nullptr;
|
||||
if (isAllZeros) {
|
||||
Replacement = ConstantAggregateZero::get(getType());
|
||||
} else if (isAllUndef) {
|
||||
Replacement = UndefValue::get(getType());
|
||||
} else {
|
||||
// Check to see if we have this struct type already.
|
||||
LLVMContextImpl::StructConstantsTy::LookupKey Lookup(
|
||||
cast<StructType>(getType()), makeArrayRef(Values));
|
||||
LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
|
||||
pImpl->StructConstants.find(Lookup);
|
||||
|
||||
if (I != pImpl->StructConstants.map_end()) {
|
||||
Replacement = I->first;
|
||||
} else {
|
||||
// Okay, the new shape doesn't exist in the system yet. Instead of
|
||||
// creating a new constant struct, inserting it, replaceallusesof'ing the
|
||||
// old with the new, then deleting the old... just update the current one
|
||||
// in place!
|
||||
pImpl->StructConstants.remove(this);
|
||||
|
||||
// Update to the new value.
|
||||
setOperand(OperandToUpdate, ToC);
|
||||
pImpl->StructConstants.insert(this);
|
||||
return;
|
||||
}
|
||||
replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
|
||||
return;
|
||||
}
|
||||
if (isAllUndef) {
|
||||
replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
|
||||
return;
|
||||
}
|
||||
|
||||
assert(Replacement != this && "I didn't contain From!");
|
||||
// Check to see if we have this struct type already.
|
||||
LLVMContextImpl::StructConstantsTy::LookupKey Lookup(
|
||||
cast<StructType>(getType()), makeArrayRef(Values));
|
||||
LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
|
||||
pImpl->StructConstants.find(Lookup);
|
||||
|
||||
// Everyone using this now uses the replacement.
|
||||
replaceAllUsesWith(Replacement);
|
||||
if (I != pImpl->StructConstants.map_end()) {
|
||||
replaceUsesOfWithOnConstantImpl(I->first);
|
||||
return;
|
||||
}
|
||||
|
||||
// Delete the old constant!
|
||||
destroyConstant();
|
||||
// Okay, the new shape doesn't exist in the system yet. Instead of
|
||||
// creating a new constant struct, inserting it, replaceallusesof'ing the
|
||||
// old with the new, then deleting the old... just update the current one
|
||||
// in place!
|
||||
pImpl->StructConstants.remove(this);
|
||||
|
||||
// Update to the new value.
|
||||
setOperand(OperandToUpdate, ToC);
|
||||
pImpl->StructConstants.insert(this);
|
||||
}
|
||||
|
||||
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
|
||||
Use *U) {
|
||||
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
|
||||
Constant *ToC = cast<Constant>(To);
|
||||
|
||||
SmallVector<Constant*, 8> Values;
|
||||
Values.reserve(getNumOperands()); // Build replacement array...
|
||||
unsigned NumUpdated = 0;
|
||||
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
||||
Constant *Val = getOperand(i);
|
||||
if (Val == From) Val = cast<Constant>(To);
|
||||
if (Val == From) {
|
||||
++NumUpdated;
|
||||
Val = ToC;
|
||||
}
|
||||
Values.push_back(Val);
|
||||
}
|
||||
|
||||
Constant *Replacement = get(Values);
|
||||
assert(Replacement != this && "I didn't contain From!");
|
||||
if (Constant *C = getImpl(Values)) {
|
||||
replaceUsesOfWithOnConstantImpl(C);
|
||||
return;
|
||||
}
|
||||
|
||||
// Everyone using this now uses the replacement.
|
||||
replaceAllUsesWith(Replacement);
|
||||
// Update to the new value. Optimize for the case when we have a single
|
||||
// operand that we're changing, but handle bulk updates efficiently.
|
||||
auto &pImpl = getType()->getContext().pImpl;
|
||||
pImpl->VectorConstants.remove(this);
|
||||
|
||||
// Delete the old constant!
|
||||
destroyConstant();
|
||||
if (NumUpdated == 1) {
|
||||
unsigned OperandToUpdate = U - OperandList;
|
||||
assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
|
||||
setOperand(OperandToUpdate, ToC);
|
||||
} else {
|
||||
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
|
||||
if (getOperand(I) == From)
|
||||
setOperand(I, ToC);
|
||||
}
|
||||
|
||||
pImpl->VectorConstants.insert(this);
|
||||
}
|
||||
|
||||
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
|
||||
|
@ -2836,6 +2861,25 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
|
|||
Constant *Replacement = getWithOperands(NewOps);
|
||||
assert(Replacement != this && "I didn't contain From!");
|
||||
|
||||
// Check if Replacement has no users (and is the same type). Ideally, this
|
||||
// check would be done *before* creating Replacement, but threading this
|
||||
// through constant-folding isn't trivial.
|
||||
if (canBecomeReplacement(Replacement)) {
|
||||
// Avoid unnecessary RAUW traffic.
|
||||
auto &ExprConstants = getType()->getContext().pImpl->ExprConstants;
|
||||
ExprConstants.remove(this);
|
||||
|
||||
auto *CE = cast<ConstantExpr>(Replacement);
|
||||
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
|
||||
// Only set the operands that have actually changed.
|
||||
if (getOperand(I) != CE->getOperand(I))
|
||||
setOperand(I, CE->getOperand(I));
|
||||
|
||||
CE->destroyConstant();
|
||||
ExprConstants.insert(this);
|
||||
return;
|
||||
}
|
||||
|
||||
// Everyone using this now uses the replacement.
|
||||
replaceAllUsesWith(Replacement);
|
||||
|
||||
|
@ -2843,6 +2887,31 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
|
|||
destroyConstant();
|
||||
}
|
||||
|
||||
bool ConstantExpr::canBecomeReplacement(const Constant *Replacement) const {
|
||||
// If Replacement already has users, use it regardless.
|
||||
if (!Replacement->use_empty())
|
||||
return false;
|
||||
|
||||
// Check for anything that could have changed during constant-folding.
|
||||
if (getValueID() != Replacement->getValueID())
|
||||
return false;
|
||||
const auto *CE = cast<ConstantExpr>(Replacement);
|
||||
if (getOpcode() != CE->getOpcode())
|
||||
return false;
|
||||
if (getNumOperands() != CE->getNumOperands())
|
||||
return false;
|
||||
if (getRawSubclassOptionalData() != CE->getRawSubclassOptionalData())
|
||||
return false;
|
||||
if (isCompare())
|
||||
if (getPredicate() != CE->getPredicate())
|
||||
return false;
|
||||
if (hasIndices())
|
||||
if (getIndices() != CE->getIndices())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Instruction *ConstantExpr::getAsInstruction() {
|
||||
SmallVector<Value*,4> ValueOperands;
|
||||
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
|
||||
|
|
|
@ -29,8 +29,6 @@
|
|||
#define DEBUG_TYPE "ir"
|
||||
|
||||
namespace llvm {
|
||||
template<class ValType>
|
||||
struct ConstantTraits;
|
||||
|
||||
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
|
||||
/// behind the scenes to implement unary constant exprs.
|
||||
|
@ -314,379 +312,234 @@ struct OperandTraits<CompareConstantExpr> :
|
|||
};
|
||||
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
|
||||
|
||||
struct ExprMapKeyType {
|
||||
ExprMapKeyType(unsigned opc,
|
||||
ArrayRef<Constant*> ops,
|
||||
unsigned short flags = 0,
|
||||
unsigned short optionalflags = 0,
|
||||
ArrayRef<unsigned> inds = None)
|
||||
: opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
|
||||
operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
|
||||
uint8_t opcode;
|
||||
uint8_t subclassoptionaldata;
|
||||
uint16_t subclassdata;
|
||||
std::vector<Constant*> operands;
|
||||
SmallVector<unsigned, 4> indices;
|
||||
bool operator==(const ExprMapKeyType& that) const {
|
||||
return this->opcode == that.opcode &&
|
||||
this->subclassdata == that.subclassdata &&
|
||||
this->subclassoptionaldata == that.subclassoptionaldata &&
|
||||
this->operands == that.operands &&
|
||||
this->indices == that.indices;
|
||||
}
|
||||
bool operator<(const ExprMapKeyType & that) const {
|
||||
return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
|
||||
indices) <
|
||||
std::tie(that.opcode, that.operands, that.subclassdata,
|
||||
that.subclassoptionaldata, that.indices);
|
||||
template <class ConstantClass> struct ConstantAggrKeyType;
|
||||
struct InlineAsmKeyType;
|
||||
struct ConstantExprKeyType;
|
||||
|
||||
template <class ConstantClass> struct ConstantInfo;
|
||||
template <> struct ConstantInfo<ConstantExpr> {
|
||||
typedef ConstantExprKeyType ValType;
|
||||
typedef Type TypeClass;
|
||||
};
|
||||
template <> struct ConstantInfo<InlineAsm> {
|
||||
typedef InlineAsmKeyType ValType;
|
||||
typedef PointerType TypeClass;
|
||||
};
|
||||
template <> struct ConstantInfo<ConstantArray> {
|
||||
typedef ConstantAggrKeyType<ConstantArray> ValType;
|
||||
typedef ArrayType TypeClass;
|
||||
};
|
||||
template <> struct ConstantInfo<ConstantStruct> {
|
||||
typedef ConstantAggrKeyType<ConstantStruct> ValType;
|
||||
typedef StructType TypeClass;
|
||||
};
|
||||
template <> struct ConstantInfo<ConstantVector> {
|
||||
typedef ConstantAggrKeyType<ConstantVector> ValType;
|
||||
typedef VectorType TypeClass;
|
||||
};
|
||||
|
||||
template <class ConstantClass> struct ConstantAggrKeyType {
|
||||
ArrayRef<Constant *> Operands;
|
||||
ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}
|
||||
ConstantAggrKeyType(const ConstantClass *C,
|
||||
SmallVectorImpl<Constant *> &Storage) {
|
||||
assert(Storage.empty() && "Expected empty storage");
|
||||
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
|
||||
Storage.push_back(C->getOperand(I));
|
||||
Operands = Storage;
|
||||
}
|
||||
|
||||
bool operator!=(const ExprMapKeyType& that) const {
|
||||
return !(*this == that);
|
||||
bool operator==(const ConstantAggrKeyType &X) const {
|
||||
return Operands == X.Operands;
|
||||
}
|
||||
bool operator==(const ConstantClass *C) const {
|
||||
if (Operands.size() != C->getNumOperands())
|
||||
return false;
|
||||
for (unsigned I = 0, E = Operands.size(); I != E; ++I)
|
||||
if (Operands[I] != C->getOperand(I))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
unsigned getHash() const {
|
||||
return hash_combine_range(Operands.begin(), Operands.end());
|
||||
}
|
||||
|
||||
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
|
||||
ConstantClass *create(TypeClass *Ty) const {
|
||||
return new (Operands.size()) ConstantClass(Ty, Operands);
|
||||
}
|
||||
};
|
||||
|
||||
struct InlineAsmKeyType {
|
||||
InlineAsmKeyType(StringRef AsmString,
|
||||
StringRef Constraints, bool hasSideEffects,
|
||||
bool isAlignStack, InlineAsm::AsmDialect asmDialect)
|
||||
: asm_string(AsmString), constraints(Constraints),
|
||||
has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
|
||||
asm_dialect(asmDialect) {}
|
||||
std::string asm_string;
|
||||
std::string constraints;
|
||||
bool has_side_effects;
|
||||
bool is_align_stack;
|
||||
InlineAsm::AsmDialect asm_dialect;
|
||||
bool operator==(const InlineAsmKeyType& that) const {
|
||||
return this->asm_string == that.asm_string &&
|
||||
this->constraints == that.constraints &&
|
||||
this->has_side_effects == that.has_side_effects &&
|
||||
this->is_align_stack == that.is_align_stack &&
|
||||
this->asm_dialect == that.asm_dialect;
|
||||
StringRef AsmString;
|
||||
StringRef Constraints;
|
||||
bool HasSideEffects;
|
||||
bool IsAlignStack;
|
||||
InlineAsm::AsmDialect AsmDialect;
|
||||
|
||||
InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
|
||||
bool HasSideEffects, bool IsAlignStack,
|
||||
InlineAsm::AsmDialect AsmDialect)
|
||||
: AsmString(AsmString), Constraints(Constraints),
|
||||
HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
|
||||
AsmDialect(AsmDialect) {}
|
||||
InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
|
||||
: AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
|
||||
HasSideEffects(Asm->hasSideEffects()),
|
||||
IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
|
||||
|
||||
bool operator==(const InlineAsmKeyType &X) const {
|
||||
return HasSideEffects == X.HasSideEffects &&
|
||||
IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
|
||||
AsmString == X.AsmString && Constraints == X.Constraints;
|
||||
}
|
||||
bool operator<(const InlineAsmKeyType& that) const {
|
||||
return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
|
||||
asm_dialect) <
|
||||
std::tie(that.asm_string, that.constraints, that.has_side_effects,
|
||||
that.is_align_stack, that.asm_dialect);
|
||||
bool operator==(const InlineAsm *Asm) const {
|
||||
return HasSideEffects == Asm->hasSideEffects() &&
|
||||
IsAlignStack == Asm->isAlignStack() &&
|
||||
AsmDialect == Asm->getDialect() &&
|
||||
AsmString == Asm->getAsmString() &&
|
||||
Constraints == Asm->getConstraintString();
|
||||
}
|
||||
unsigned getHash() const {
|
||||
return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
|
||||
AsmDialect);
|
||||
}
|
||||
|
||||
bool operator!=(const InlineAsmKeyType& that) const {
|
||||
return !(*this == that);
|
||||
typedef ConstantInfo<InlineAsm>::TypeClass TypeClass;
|
||||
InlineAsm *create(TypeClass *Ty) const {
|
||||
return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
|
||||
IsAlignStack, AsmDialect);
|
||||
}
|
||||
};
|
||||
|
||||
// The number of operands for each ConstantCreator::create method is
|
||||
// determined by the ConstantTraits template.
|
||||
// ConstantCreator - A class that is used to create constants by
|
||||
// ConstantUniqueMap*. This class should be partially specialized if there is
|
||||
// something strange that needs to be done to interface to the ctor for the
|
||||
// constant.
|
||||
//
|
||||
template<typename T, typename Alloc>
|
||||
struct ConstantTraits< std::vector<T, Alloc> > {
|
||||
static unsigned uses(const std::vector<T, Alloc>& v) {
|
||||
return v.size();
|
||||
}
|
||||
};
|
||||
struct ConstantExprKeyType {
|
||||
uint8_t Opcode;
|
||||
uint8_t SubclassOptionalData;
|
||||
uint16_t SubclassData;
|
||||
ArrayRef<Constant *> Ops;
|
||||
ArrayRef<unsigned> Indexes;
|
||||
|
||||
template<>
|
||||
struct ConstantTraits<Constant *> {
|
||||
static unsigned uses(Constant * const & v) {
|
||||
return 1;
|
||||
ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
|
||||
unsigned short SubclassData = 0,
|
||||
unsigned short SubclassOptionalData = 0,
|
||||
ArrayRef<unsigned> Indexes = None)
|
||||
: Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
|
||||
SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
|
||||
ConstantExprKeyType(const ConstantExpr *CE,
|
||||
SmallVectorImpl<Constant *> &Storage)
|
||||
: Opcode(CE->getOpcode()),
|
||||
SubclassOptionalData(CE->getRawSubclassOptionalData()),
|
||||
SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
|
||||
Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
|
||||
assert(Storage.empty() && "Expected empty storage");
|
||||
for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
|
||||
Storage.push_back(CE->getOperand(I));
|
||||
Ops = Storage;
|
||||
}
|
||||
};
|
||||
|
||||
template<class ConstantClass, class TypeClass, class ValType>
|
||||
struct ConstantCreator {
|
||||
static ConstantClass *create(TypeClass *Ty, const ValType &V) {
|
||||
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
|
||||
bool operator==(const ConstantExprKeyType &X) const {
|
||||
return Opcode == X.Opcode && SubclassData == X.SubclassData &&
|
||||
SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
|
||||
Indexes == X.Indexes;
|
||||
}
|
||||
};
|
||||
|
||||
template<class ConstantClass, class TypeClass>
|
||||
struct ConstantArrayCreator {
|
||||
static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
|
||||
return new(V.size()) ConstantClass(Ty, V);
|
||||
bool operator==(const ConstantExpr *CE) const {
|
||||
if (Opcode != CE->getOpcode())
|
||||
return false;
|
||||
if (SubclassOptionalData != CE->getRawSubclassOptionalData())
|
||||
return false;
|
||||
if (Ops.size() != CE->getNumOperands())
|
||||
return false;
|
||||
if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
|
||||
return false;
|
||||
for (unsigned I = 0, E = Ops.size(); I != E; ++I)
|
||||
if (Ops[I] != CE->getOperand(I))
|
||||
return false;
|
||||
if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
template<class ConstantClass>
|
||||
struct ConstantKeyData {
|
||||
typedef void ValType;
|
||||
static ValType getValType(ConstantClass *C) {
|
||||
llvm_unreachable("Unknown Constant type!");
|
||||
unsigned getHash() const {
|
||||
return hash_combine(Opcode, SubclassOptionalData, SubclassData,
|
||||
hash_combine_range(Ops.begin(), Ops.end()),
|
||||
hash_combine_range(Indexes.begin(), Indexes.end()));
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
|
||||
static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
|
||||
unsigned short pred = 0) {
|
||||
if (Instruction::isCast(V.opcode))
|
||||
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
|
||||
if ((V.opcode >= Instruction::BinaryOpsBegin &&
|
||||
V.opcode < Instruction::BinaryOpsEnd))
|
||||
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
|
||||
V.subclassoptionaldata);
|
||||
if (V.opcode == Instruction::Select)
|
||||
return new SelectConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::ExtractElement)
|
||||
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::InsertElement)
|
||||
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::ShuffleVector)
|
||||
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
|
||||
V.operands[2]);
|
||||
if (V.opcode == Instruction::InsertValue)
|
||||
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
|
||||
V.indices, Ty);
|
||||
if (V.opcode == Instruction::ExtractValue)
|
||||
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
|
||||
if (V.opcode == Instruction::GetElementPtr) {
|
||||
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
|
||||
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
|
||||
V.subclassoptionaldata);
|
||||
typedef ConstantInfo<ConstantExpr>::TypeClass TypeClass;
|
||||
ConstantExpr *create(TypeClass *Ty) const {
|
||||
switch (Opcode) {
|
||||
default:
|
||||
if (Instruction::isCast(Opcode))
|
||||
return new UnaryConstantExpr(Opcode, Ops[0], Ty);
|
||||
if ((Opcode >= Instruction::BinaryOpsBegin &&
|
||||
Opcode < Instruction::BinaryOpsEnd))
|
||||
return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
|
||||
SubclassOptionalData);
|
||||
llvm_unreachable("Invalid ConstantExpr!");
|
||||
case Instruction::Select:
|
||||
return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::ExtractElement:
|
||||
return new ExtractElementConstantExpr(Ops[0], Ops[1]);
|
||||
case Instruction::InsertElement:
|
||||
return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::ShuffleVector:
|
||||
return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
|
||||
case Instruction::InsertValue:
|
||||
return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
|
||||
case Instruction::ExtractValue:
|
||||
return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
|
||||
case Instruction::GetElementPtr:
|
||||
return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
|
||||
SubclassOptionalData);
|
||||
case Instruction::ICmp:
|
||||
return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
|
||||
Ops[0], Ops[1]);
|
||||
case Instruction::FCmp:
|
||||
return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
|
||||
Ops[0], Ops[1]);
|
||||
}
|
||||
|
||||
// The compare instructions are weird. We have to encode the predicate
|
||||
// value and it is combined with the instruction opcode by multiplying
|
||||
// the opcode by one hundred. We must decode this to get the predicate.
|
||||
if (V.opcode == Instruction::ICmp)
|
||||
return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
|
||||
V.operands[0], V.operands[1]);
|
||||
if (V.opcode == Instruction::FCmp)
|
||||
return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
|
||||
V.operands[0], V.operands[1]);
|
||||
llvm_unreachable("Invalid ConstantExpr!");
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantKeyData<ConstantExpr> {
|
||||
typedef ExprMapKeyType ValType;
|
||||
static ValType getValType(ConstantExpr *CE) {
|
||||
std::vector<Constant*> Operands;
|
||||
Operands.reserve(CE->getNumOperands());
|
||||
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
|
||||
Operands.push_back(cast<Constant>(CE->getOperand(i)));
|
||||
return ExprMapKeyType(CE->getOpcode(), Operands,
|
||||
CE->isCompare() ? CE->getPredicate() : 0,
|
||||
CE->getRawSubclassOptionalData(),
|
||||
CE->hasIndices() ?
|
||||
CE->getIndices() : ArrayRef<unsigned>());
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
|
||||
static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
|
||||
return new InlineAsm(Ty, Key.asm_string, Key.constraints,
|
||||
Key.has_side_effects, Key.is_align_stack,
|
||||
Key.asm_dialect);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct ConstantKeyData<InlineAsm> {
|
||||
typedef InlineAsmKeyType ValType;
|
||||
static ValType getValType(InlineAsm *Asm) {
|
||||
return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
|
||||
Asm->hasSideEffects(), Asm->isAlignStack(),
|
||||
Asm->getDialect());
|
||||
}
|
||||
};
|
||||
|
||||
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
|
||||
bool HasLargeKey = false /*true for arrays and structs*/ >
|
||||
class ConstantUniqueMap {
|
||||
template <class ConstantClass> class ConstantUniqueMap {
|
||||
public:
|
||||
typedef std::pair<TypeClass*, ValType> MapKey;
|
||||
typedef std::map<MapKey, ConstantClass *> MapTy;
|
||||
typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
|
||||
private:
|
||||
/// Map - This is the main map from the element descriptor to the Constants.
|
||||
/// This is the primary way we avoid creating two of the same shape
|
||||
/// constant.
|
||||
MapTy Map;
|
||||
|
||||
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
|
||||
/// from the constants to their element in Map. This is important for
|
||||
/// removal of constants from the array, which would otherwise have to scan
|
||||
/// through the map with very large keys.
|
||||
InverseMapTy InverseMap;
|
||||
typedef typename ConstantInfo<ConstantClass>::ValType ValType;
|
||||
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
|
||||
typedef std::pair<TypeClass *, ValType> LookupKey;
|
||||
|
||||
public:
|
||||
typename MapTy::iterator map_begin() { return Map.begin(); }
|
||||
typename MapTy::iterator map_end() { return Map.end(); }
|
||||
|
||||
void freeConstants() {
|
||||
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
|
||||
I != E; ++I) {
|
||||
// Asserts that use_empty().
|
||||
delete I->second;
|
||||
}
|
||||
}
|
||||
|
||||
/// InsertOrGetItem - Return an iterator for the specified element.
|
||||
/// If the element exists in the map, the returned iterator points to the
|
||||
/// entry and Exists=true. If not, the iterator points to the newly
|
||||
/// inserted entry and returns Exists=false. Newly inserted entries have
|
||||
/// I->second == 0, and should be filled in.
|
||||
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
|
||||
&InsertVal,
|
||||
bool &Exists) {
|
||||
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
|
||||
Exists = !IP.second;
|
||||
return IP.first;
|
||||
}
|
||||
|
||||
private:
|
||||
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
|
||||
if (HasLargeKey) {
|
||||
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
|
||||
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
|
||||
IMI->second->second == CP &&
|
||||
"InverseMap corrupt!");
|
||||
return IMI->second;
|
||||
}
|
||||
|
||||
typename MapTy::iterator I =
|
||||
Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
|
||||
ConstantKeyData<ConstantClass>::getValType(CP)));
|
||||
if (I == Map.end() || I->second != CP) {
|
||||
// FIXME: This should not use a linear scan. If this gets to be a
|
||||
// performance problem, someone should look at this.
|
||||
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
|
||||
/* empty */;
|
||||
}
|
||||
return I;
|
||||
}
|
||||
|
||||
ConstantClass *Create(TypeClass *Ty, ValRefType V,
|
||||
typename MapTy::iterator I) {
|
||||
ConstantClass* Result =
|
||||
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
||||
|
||||
assert(Result->getType() == Ty && "Type specified is not correct!");
|
||||
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
||||
|
||||
if (HasLargeKey) // Remember the reverse mapping if needed.
|
||||
InverseMap.insert(std::make_pair(Result, I));
|
||||
|
||||
return Result;
|
||||
}
|
||||
public:
|
||||
|
||||
/// getOrCreate - Return the specified constant from the map, creating it if
|
||||
/// necessary.
|
||||
ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
|
||||
MapKey Lookup(Ty, V);
|
||||
ConstantClass* Result = nullptr;
|
||||
|
||||
typename MapTy::iterator I = Map.find(Lookup);
|
||||
// Is it in the map?
|
||||
if (I != Map.end())
|
||||
Result = I->second;
|
||||
|
||||
if (!Result) {
|
||||
// If no preexisting value, create one now...
|
||||
Result = Create(Ty, V, I);
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
void remove(ConstantClass *CP) {
|
||||
typename MapTy::iterator I = FindExistingElement(CP);
|
||||
assert(I != Map.end() && "Constant not found in constant table!");
|
||||
assert(I->second == CP && "Didn't find correct element?");
|
||||
|
||||
if (HasLargeKey) // Remember the reverse mapping if needed.
|
||||
InverseMap.erase(CP);
|
||||
|
||||
Map.erase(I);
|
||||
}
|
||||
|
||||
/// MoveConstantToNewSlot - If we are about to change C to be the element
|
||||
/// specified by I, update our internal data structures to reflect this
|
||||
/// fact.
|
||||
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
|
||||
// First, remove the old location of the specified constant in the map.
|
||||
typename MapTy::iterator OldI = FindExistingElement(C);
|
||||
assert(OldI != Map.end() && "Constant not found in constant table!");
|
||||
assert(OldI->second == C && "Didn't find correct element?");
|
||||
|
||||
// Remove the old entry from the map.
|
||||
Map.erase(OldI);
|
||||
|
||||
// Update the inverse map so that we know that this constant is now
|
||||
// located at descriptor I.
|
||||
if (HasLargeKey) {
|
||||
assert(I->second == C && "Bad inversemap entry!");
|
||||
InverseMap[C] = I;
|
||||
}
|
||||
}
|
||||
|
||||
void dump() const {
|
||||
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
|
||||
}
|
||||
};
|
||||
|
||||
// Unique map for aggregate constants
|
||||
template<class TypeClass, class ConstantClass>
|
||||
class ConstantAggrUniqueMap {
|
||||
public:
|
||||
typedef ArrayRef<Constant*> Operands;
|
||||
typedef std::pair<TypeClass*, Operands> LookupKey;
|
||||
private:
|
||||
struct MapInfo {
|
||||
typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
|
||||
typedef DenseMapInfo<Constant*> ConstantInfo;
|
||||
typedef DenseMapInfo<TypeClass*> TypeClassInfo;
|
||||
static inline ConstantClass* getEmptyKey() {
|
||||
typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
|
||||
static inline ConstantClass *getEmptyKey() {
|
||||
return ConstantClassInfo::getEmptyKey();
|
||||
}
|
||||
static inline ConstantClass* getTombstoneKey() {
|
||||
static inline ConstantClass *getTombstoneKey() {
|
||||
return ConstantClassInfo::getTombstoneKey();
|
||||
}
|
||||
static unsigned getHashValue(const ConstantClass *CP) {
|
||||
SmallVector<Constant*, 8> CPOperands;
|
||||
CPOperands.reserve(CP->getNumOperands());
|
||||
for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
|
||||
CPOperands.push_back(CP->getOperand(I));
|
||||
return getHashValue(LookupKey(CP->getType(), CPOperands));
|
||||
SmallVector<Constant *, 8> Storage;
|
||||
return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
|
||||
}
|
||||
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
|
||||
return LHS == RHS;
|
||||
}
|
||||
static unsigned getHashValue(const LookupKey &Val) {
|
||||
return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
|
||||
Val.second.end()));
|
||||
return hash_combine(Val.first, Val.second.getHash());
|
||||
}
|
||||
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
|
||||
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
|
||||
return false;
|
||||
if (LHS.first != RHS->getType()
|
||||
|| LHS.second.size() != RHS->getNumOperands())
|
||||
if (LHS.first != RHS->getType())
|
||||
return false;
|
||||
for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
|
||||
if (LHS.second[I] != RHS->getOperand(I))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
return LHS.second == RHS;
|
||||
}
|
||||
};
|
||||
|
||||
public:
|
||||
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
|
||||
|
||||
private:
|
||||
/// Map - This is the main map from the element descriptor to the Constants.
|
||||
/// This is the primary way we avoid creating two of the same shape
|
||||
/// constant.
|
||||
MapTy Map;
|
||||
|
||||
public:
|
||||
|
@ -694,44 +547,33 @@ public:
|
|||
typename MapTy::iterator map_end() { return Map.end(); }
|
||||
|
||||
void freeConstants() {
|
||||
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
|
||||
I != E; ++I) {
|
||||
for (auto &I : Map)
|
||||
// Asserts that use_empty().
|
||||
delete I->first;
|
||||
}
|
||||
delete I.first;
|
||||
}
|
||||
|
||||
private:
|
||||
typename MapTy::iterator findExistingElement(ConstantClass *CP) {
|
||||
return Map.find(CP);
|
||||
}
|
||||
|
||||
ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
|
||||
ConstantClass* Result =
|
||||
ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
|
||||
ConstantClass *create(TypeClass *Ty, ValType V) {
|
||||
ConstantClass *Result = V.create(Ty);
|
||||
|
||||
assert(Result->getType() == Ty && "Type specified is not correct!");
|
||||
Map[Result] = '\0';
|
||||
insert(Result);
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// getOrCreate - Return the specified constant from the map, creating it if
|
||||
/// necessary.
|
||||
ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
|
||||
/// Return the specified constant from the map, creating it if necessary.
|
||||
ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
|
||||
LookupKey Lookup(Ty, V);
|
||||
ConstantClass* Result = nullptr;
|
||||
ConstantClass *Result = nullptr;
|
||||
|
||||
typename MapTy::iterator I = Map.find_as(Lookup);
|
||||
// Is it in the map?
|
||||
if (I != Map.end())
|
||||
auto I = find(Lookup);
|
||||
if (I == Map.end())
|
||||
Result = create(Ty, V);
|
||||
else
|
||||
Result = I->first;
|
||||
|
||||
if (!Result) {
|
||||
// If no preexisting value, create one now...
|
||||
Result = Create(Ty, V, I);
|
||||
}
|
||||
assert(Result && "Unexpected nullptr");
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
@ -742,21 +584,17 @@ public:
|
|||
}
|
||||
|
||||
/// Insert the constant into its proper slot.
|
||||
void insert(ConstantClass *CP) {
|
||||
Map[CP] = '\0';
|
||||
}
|
||||
void insert(ConstantClass *CP) { Map[CP] = '\0'; }
|
||||
|
||||
/// Remove this constant from the map
|
||||
void remove(ConstantClass *CP) {
|
||||
typename MapTy::iterator I = findExistingElement(CP);
|
||||
typename MapTy::iterator I = Map.find(CP);
|
||||
assert(I != Map.end() && "Constant not found in constant table!");
|
||||
assert(I->first == CP && "Didn't find correct element?");
|
||||
Map.erase(I);
|
||||
}
|
||||
|
||||
void dump() const {
|
||||
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
|
||||
}
|
||||
void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
|
|
@ -75,7 +75,7 @@ LLVMContextImpl::~LLVMContextImpl() {
|
|||
// Free the constants. This is important to do here to ensure that they are
|
||||
// freed before the LeakDetector is torn down.
|
||||
std::for_each(ExprConstants.map_begin(), ExprConstants.map_end(),
|
||||
DropReferences());
|
||||
DropFirst());
|
||||
std::for_each(ArrayConstants.map_begin(), ArrayConstants.map_end(),
|
||||
DropFirst());
|
||||
std::for_each(StructConstants.map_begin(), StructConstants.map_end(),
|
||||
|
|
|
@ -272,13 +272,13 @@ public:
|
|||
|
||||
DenseMap<Type*, ConstantAggregateZero*> CAZConstants;
|
||||
|
||||
typedef ConstantAggrUniqueMap<ArrayType, ConstantArray> ArrayConstantsTy;
|
||||
typedef ConstantUniqueMap<ConstantArray> ArrayConstantsTy;
|
||||
ArrayConstantsTy ArrayConstants;
|
||||
|
||||
typedef ConstantAggrUniqueMap<StructType, ConstantStruct> StructConstantsTy;
|
||||
typedef ConstantUniqueMap<ConstantStruct> StructConstantsTy;
|
||||
StructConstantsTy StructConstants;
|
||||
|
||||
typedef ConstantAggrUniqueMap<VectorType, ConstantVector> VectorConstantsTy;
|
||||
typedef ConstantUniqueMap<ConstantVector> VectorConstantsTy;
|
||||
VectorConstantsTy VectorConstants;
|
||||
|
||||
DenseMap<PointerType*, ConstantPointerNull*> CPNConstants;
|
||||
|
@ -289,12 +289,10 @@ public:
|
|||
|
||||
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
|
||||
BlockAddresses;
|
||||
ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
|
||||
ExprConstants;
|
||||
ConstantUniqueMap<ConstantExpr> ExprConstants;
|
||||
|
||||
ConstantUniqueMap<InlineAsm> InlineAsms;
|
||||
|
||||
ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType,
|
||||
InlineAsm> InlineAsms;
|
||||
|
||||
ConstantInt *TheTrueVal;
|
||||
ConstantInt *TheFalseVal;
|
||||
|
||||
|
|
|
@ -274,5 +274,30 @@ TEST(ConstantsTest, ReplaceWithConstantTest) {
|
|||
|
||||
#undef CHECK
|
||||
|
||||
TEST(ConstantsTest, ConstantArrayReplaceWithConstant) {
|
||||
LLVMContext Context;
|
||||
std::unique_ptr<Module> M(new Module("MyModule", Context));
|
||||
|
||||
Type *IntTy = Type::getInt8Ty(Context);
|
||||
ArrayType *ArrayTy = ArrayType::get(IntTy, 2);
|
||||
Constant *A01Vals[2] = {ConstantInt::get(IntTy, 0),
|
||||
ConstantInt::get(IntTy, 1)};
|
||||
Constant *A01 = ConstantArray::get(ArrayTy, A01Vals);
|
||||
|
||||
Constant *Global = new GlobalVariable(*M, IntTy, false,
|
||||
GlobalValue::ExternalLinkage, nullptr);
|
||||
Constant *GlobalInt = ConstantExpr::getPtrToInt(Global, IntTy);
|
||||
Constant *A0GVals[2] = {ConstantInt::get(IntTy, 0), GlobalInt};
|
||||
Constant *A0G = ConstantArray::get(ArrayTy, A0GVals);
|
||||
ASSERT_NE(A01, A0G);
|
||||
|
||||
GlobalVariable *RefArray =
|
||||
new GlobalVariable(*M, ArrayTy, false, GlobalValue::ExternalLinkage, A0G);
|
||||
ASSERT_EQ(A0G, RefArray->getInitializer());
|
||||
|
||||
GlobalInt->replaceAllUsesWith(ConstantInt::get(IntTy, 1));
|
||||
ASSERT_EQ(A01, RefArray->getInitializer());
|
||||
}
|
||||
|
||||
} // end anonymous namespace
|
||||
} // end namespace llvm
|
||||
|
|
Loading…
Reference in New Issue