Revert "ScheduleDAGInstrs: Rework schedule graph builder."

This works mostly fine but breaks some stage 1 builders when compiling
compiler-rt on i386. Revert for further investigation as I can't see an
obvious cause/fix.

This reverts commit r254577.

llvm-svn: 254586
This commit is contained in:
Matthias Braun 2015-12-03 03:01:10 +00:00
parent 311fef6ea5
commit 2fd672a221
16 changed files with 156 additions and 277 deletions

View File

@ -33,26 +33,15 @@ namespace llvm {
/// An individual mapping from virtual register number to SUnit.
struct VReg2SUnit {
unsigned VirtReg;
LaneBitmask LaneMask;
SUnit *SU;
VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
: VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {}
unsigned getSparseSetIndex() const {
return TargetRegisterInfo::virtReg2Index(VirtReg);
}
};
/// Mapping from virtual register to SUnit including an operand index.
struct VReg2SUnitOperIdx : public VReg2SUnit {
unsigned OperandIndex;
VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
unsigned OperandIndex, SUnit *SU)
: VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
};
/// Record a physical register access.
/// For non-data-dependent uses, OpIdx == -1.
struct PhysRegSUOper {
@ -80,10 +69,7 @@ namespace llvm {
/// Track local uses of virtual registers. These uses are gathered by the DAG
/// builder and may be consulted by the scheduler to avoid iterating an entire
/// vreg use list.
typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMultiMap;
typedef SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>
VReg2SUnitOperIdxMultiMap;
typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2UseMap;
/// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of
/// MachineInstrs.
@ -109,9 +95,6 @@ namespace llvm {
/// it has taken responsibility for scheduling the terminator correctly.
bool CanHandleTerminators;
/// Whether lane masks should get tracked.
bool TrackLaneMasks;
/// State specific to the current scheduling region.
/// ------------------------------------------------
@ -134,7 +117,7 @@ namespace llvm {
/// After calling BuildSchedGraph, each vreg used in the scheduling region
/// is mapped to a set of SUnits. These include all local vreg uses, not
/// just the uses for a singly defined vreg.
VReg2SUnitMultiMap VRegUses;
VReg2UseMap VRegUses;
/// State internal to DAG building.
/// -------------------------------
@ -146,12 +129,8 @@ namespace llvm {
Reg2SUnitsMap Defs;
Reg2SUnitsMap Uses;
/// Tracks the last instruction(s) in this region defining each virtual
/// register. There may be multiple current definitions for a register with
/// disjunct lanemasks.
VReg2SUnitMultiMap CurrentVRegDefs;
/// Tracks the last instructions in this region using each virtual register.
VReg2SUnitOperIdxMultiMap CurrentVRegUses;
/// Track the last instruction in this region defining each virtual register.
VReg2SUnitMap VRegDefs;
/// PendingLoads - Remember where unknown loads are after the most recent
/// unknown store, as we iterate. As with Defs and Uses, this is here
@ -221,8 +200,7 @@ namespace llvm {
/// input.
void buildSchedGraph(AliasAnalysis *AA,
RegPressureTracker *RPTracker = nullptr,
PressureDiffs *PDiffs = nullptr,
bool TrackLaneMasks = false);
PressureDiffs *PDiffs = nullptr);
/// addSchedBarrierDeps - Add dependencies from instructions in the current
/// list of instructions being scheduled to scheduling barrier. We want to
@ -269,12 +247,6 @@ namespace llvm {
/// Other adjustments may be made to the instruction if necessary. Return
/// true if the operand has been deleted, false if not.
bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO);
/// Returns a mask for which lanes get read/written by the given (register)
/// machine operand.
LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
void collectVRegUses(SUnit *SU);
};
/// newSUnit - Creates a new SUnit and return a ptr to it.

View File

@ -13,12 +13,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
@ -55,7 +55,7 @@ ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
bool RemoveKillFlags)
: ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(LIS),
RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
TrackLaneMasks(false), FirstDbgValue(nullptr) {
FirstDbgValue(nullptr) {
DbgValues.clear();
const TargetSubtargetInfo &ST = mf.getSubtarget();
@ -363,20 +363,6 @@ void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
}
}
LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
{
unsigned Reg = MO.getReg();
// No point in tracking lanemasks if we don't have interesting subregisters.
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
if (!RC.HasDisjunctSubRegs)
return ~0u;
unsigned SubReg = MO.getSubReg();
if (SubReg == 0)
return RC.getLaneMask();
return TRI->getSubRegIndexLaneMask(SubReg);
}
/// addVRegDefDeps - Add register output and data dependencies from this SUnit
/// to instructions that occur later in the same scheduling region if they read
/// from or write to the virtual register defined at OperIdx.
@ -384,106 +370,35 @@ LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
/// TODO: Hoist loop induction variable increments. This has to be
/// reevaluated. Generally, IV scheduling should be done before coalescing.
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
MachineInstr *MI = SU->getInstr();
MachineOperand &MO = MI->getOperand(OperIdx);
unsigned Reg = MO.getReg();
const MachineInstr *MI = SU->getInstr();
unsigned Reg = MI->getOperand(OperIdx).getReg();
LaneBitmask DefLaneMask;
LaneBitmask KillLaneMask;
if (TrackLaneMasks) {
bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
DefLaneMask = getLaneMaskForMO(MO);
// If we have a <read-undef> flag, none of the lane values comes from an
// earlier instruction.
KillLaneMask = IsKill ? ~0u : DefLaneMask;
// Clear undef flag, we'll re-add it later once we know which subregister
// Def is first.
MO.setIsUndef(false);
} else {
DefLaneMask = ~0u;
KillLaneMask = ~0u;
}
if (MO.isDead()) {
assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
"Dead defs should have no uses");
} else {
// Add data dependence to all uses we found so far.
const TargetSubtargetInfo &ST = MF.getSubtarget();
for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
E = CurrentVRegUses.end(); I != E; /*empty*/) {
LaneBitmask LaneMask = I->LaneMask;
// Ignore uses of other lanes.
if ((LaneMask & KillLaneMask) == 0) {
++I;
continue;
}
if ((LaneMask & DefLaneMask) != 0) {
SUnit *UseSU = I->SU;
MachineInstr *Use = UseSU->getInstr();
SDep Dep(SU, SDep::Data, Reg);
Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
I->OperandIndex));
ST.adjustSchedDependency(SU, UseSU, Dep);
UseSU->addPred(Dep);
}
LaneMask &= ~KillLaneMask;
// If we found a Def for all lanes of this use, remove it from the list.
if (LaneMask != 0) {
I->LaneMask = LaneMask;
++I;
} else
I = CurrentVRegUses.erase(I);
}
}
// Shortcut: Singly defined vregs do not have output/anti dependencies.
// Singly defined vregs do not have output/anti dependencies.
// The current operand is a def, so we have at least one.
// Check here if there are any others...
if (MRI.hasOneDef(Reg))
return;
// Add output dependence to the next nearest defs of this vreg.
// Add output dependence to the next nearest def of this vreg.
//
// Unless this definition is dead, the output dependence should be
// transitively redundant with antidependencies from this definition's
// uses. We're conservative for now until we have a way to guarantee the uses
// are not eliminated sometime during scheduling. The output dependence edge
// is also useful if output latency exceeds def-use latency.
LaneBitmask LaneMask = DefLaneMask;
for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
CurrentVRegDefs.end())) {
// Ignore defs for other lanes.
if ((V2SU.LaneMask & LaneMask) == 0)
continue;
// Add an output dependence.
SUnit *DefSU = V2SU.SU;
// Ignore additional defs of the same lanes in one instruction. This can
// happen because lanemasks are shared for targets with too many
// subregisters. We also use some representration tricks/hacks where we
// add super-register defs/uses, to imply that although we only access parts
// of the reg we care about the full one.
if (DefSU == SU)
continue;
SDep Dep(SU, SDep::Output, Reg);
Dep.setLatency(
SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
DefSU->addPred(Dep);
// Update current definition. This can get tricky if the def was about a
// bigger lanemask before. We then have to shrink it and create a new
// VReg2SUnit for the non-overlapping part.
LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
if (NonOverlapMask != 0)
CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, V2SU.SU));
V2SU.SU = SU;
V2SU.LaneMask = OverlapMask;
VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
if (DefI == VRegDefs.end())
VRegDefs.insert(VReg2SUnit(Reg, SU));
else {
SUnit *DefSU = DefI->SU;
if (DefSU != SU && DefSU != &ExitSU) {
SDep Dep(SU, SDep::Output, Reg);
Dep.setLatency(
SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
DefSU->addPred(Dep);
}
DefI->SU = SU;
}
// If there was no CurrentVRegDefs entry for some lanes yet, create one.
if (LaneMask != 0)
CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
}
/// addVRegUseDeps - Add a register data dependency if the instruction that
@ -493,26 +408,49 @@ void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
///
/// TODO: Handle ExitSU "uses" properly.
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
const MachineInstr *MI = SU->getInstr();
const MachineOperand &MO = MI->getOperand(OperIdx);
unsigned Reg = MO.getReg();
MachineInstr *MI = SU->getInstr();
unsigned Reg = MI->getOperand(OperIdx).getReg();
// Remember the use. Data dependencies will be added when we find the def.
LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
// Add antidependences to the following defs of the vreg.
for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
CurrentVRegDefs.end())) {
// Ignore defs for unrelated lanes.
LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
if ((PrevDefLaneMask & LaneMask) == 0)
continue;
if (V2SU.SU == SU)
continue;
V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
// Record this local VReg use.
VReg2UseMap::iterator UI = VRegUses.find(Reg);
for (; UI != VRegUses.end(); ++UI) {
if (UI->SU == SU)
break;
}
if (UI == VRegUses.end())
VRegUses.insert(VReg2SUnit(Reg, SU));
// Lookup this operand's reaching definition.
assert(LIS && "vreg dependencies requires LiveIntervals");
LiveQueryResult LRQ
= LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
VNInfo *VNI = LRQ.valueIn();
// VNI will be valid because MachineOperand::readsReg() is checked by caller.
assert(VNI && "No value to read by operand");
MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
// Phis and other noninstructions (after coalescing) have a NULL Def.
if (Def) {
SUnit *DefSU = getSUnit(Def);
if (DefSU) {
// The reaching Def lives within this scheduling region.
// Create a data dependence.
SDep dep(DefSU, SDep::Data, Reg);
// Adjust the dependence latency using operand def/use information, then
// allow the target to perform its own adjustments.
int DefOp = Def->findRegisterDefOperandIdx(Reg);
dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
const TargetSubtargetInfo &ST = MF.getSubtarget();
ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
SU->addPred(dep);
}
}
// Add antidependence to the following def of the vreg it uses.
VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
if (DefI != VRegDefs.end() && DefI->SU != SU)
DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
}
/// Return true if MI is an instruction we are unable to reason about
@ -795,42 +733,17 @@ void ScheduleDAGInstrs::initSUnits() {
}
}
void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
const MachineInstr *MI = SU->getInstr();
for (const MachineOperand &MO : MI->operands()) {
if (!MO.isReg())
continue;
if (!MO.isUse() && (MO.getSubReg() == 0 || !TrackLaneMasks))
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// Record this local VReg use.
VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
for (; UI != VRegUses.end(); ++UI) {
if (UI->SU == SU)
break;
}
if (UI == VRegUses.end())
VRegUses.insert(VReg2SUnit(Reg, 0, SU));
}
}
/// If RegPressure is non-null, compute register pressure as a side effect. The
/// DAG builder is an efficient place to do it because it already visits
/// operands.
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
RegPressureTracker *RPTracker,
PressureDiffs *PDiffs,
bool TrackLaneMasks) {
PressureDiffs *PDiffs) {
const TargetSubtargetInfo &ST = MF.getSubtarget();
bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
: ST.useAA();
AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
this->TrackLaneMasks = TrackLaneMasks;
MISUnitMap.clear();
ScheduleDAG::clearDAG();
@ -864,14 +777,10 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
Defs.setUniverse(TRI->getNumRegs());
Uses.setUniverse(TRI->getNumRegs());
assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
unsigned NumVirtRegs = MRI.getNumVirtRegs();
CurrentVRegDefs.setUniverse(NumVirtRegs);
CurrentVRegUses.setUniverse(NumVirtRegs);
assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
VRegUses.clear();
VRegUses.setUniverse(NumVirtRegs);
VRegDefs.setUniverse(MRI.getNumVirtRegs());
VRegUses.setUniverse(MRI.getNumVirtRegs());
// Model data dependencies between instructions being scheduled and the
// ExitSU.
@ -899,7 +808,6 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
assert(RPTracker->getPos() == std::prev(MII) &&
"RPTracker can't find MI");
collectVRegUses(SU);
}
assert(
@ -1149,8 +1057,7 @@ void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
Defs.clear();
Uses.clear();
CurrentVRegDefs.clear();
CurrentVRegUses.clear();
VRegDefs.clear();
PendingLoads.clear();
}

View File

@ -6,7 +6,7 @@
; FUNC-LABEL: {{^}}width_2d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[2].Z
; EG: MOV [[VAL]], KC0[2].Z
define void @width_2d (%opencl.image2d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -19,7 +19,7 @@ entry:
; FUNC-LABEL: {{^}}width_3d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[2].Z
; EG: MOV [[VAL]], KC0[2].Z
define void @width_3d (%opencl.image3d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -36,7 +36,7 @@ entry:
; FUNC-LABEL: {{^}}height_2d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[2].W
; EG: MOV [[VAL]], KC0[2].W
define void @height_2d (%opencl.image2d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -49,7 +49,7 @@ entry:
; FUNC-LABEL: {{^}}height_3d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[2].W
; EG: MOV [[VAL]], KC0[2].W
define void @height_3d (%opencl.image3d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -66,7 +66,7 @@ entry:
; FUNC-LABEL: {{^}}depth_3d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[3].X
; EG: MOV [[VAL]], KC0[3].X
define void @depth_3d (%opencl.image3d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -83,7 +83,7 @@ entry:
; FUNC-LABEL: {{^}}data_type_2d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[3].Y
; EG: MOV [[VAL]], KC0[3].Y
define void @data_type_2d (%opencl.image2d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -96,7 +96,7 @@ entry:
; FUNC-LABEL: {{^}}data_type_3d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[3].Y
; EG: MOV [[VAL]], KC0[3].Y
define void @data_type_3d (%opencl.image3d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -113,7 +113,7 @@ entry:
; FUNC-LABEL: {{^}}channel_order_2d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[3].Z
; EG: MOV [[VAL]], KC0[3].Z
define void @channel_order_2d (%opencl.image2d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -126,7 +126,7 @@ entry:
; FUNC-LABEL: {{^}}channel_order_3d:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[3].Z
; EG: MOV [[VAL]], KC0[3].Z
define void @channel_order_3d (%opencl.image3d_t addrspace(1)* %in,
i32 addrspace(1)* %out) {
entry:
@ -145,7 +145,7 @@ entry:
;
; FUNC-LABEL: {{^}}image_arg_2nd:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[4].Z
; EG: MOV [[VAL]], KC0[4].Z
define void @image_arg_2nd (%opencl.image3d_t addrspace(1)* %in1,
i32 %x,
%opencl.image2d_t addrspace(1)* %in2,

View File

@ -7,8 +7,8 @@
; ADD_INT literal.x KC0[2].Z, 5
; CHECK: {{^}}i32_literal:
; CHECK: LSHR
; CHECK-NEXT: ADD_INT * {{\** *}}T{{[0-9]\.[XYZW]}}, KC0[2].Z, literal.y
; CHECK: ADD_INT {{\** *}}T{{[0-9]\.[XYZW]}}, KC0[2].Z, literal.x
; CHECK-NEXT: LSHR
; CHECK-NEXT: 5
define void @i32_literal(i32 addrspace(1)* %out, i32 %in) {
entry:
@ -24,8 +24,8 @@ entry:
; ADD literal.x KC0[2].Z, 5.0
; CHECK: {{^}}float_literal:
; CHECK: LSHR
; CHECK-NEXT: ADD * {{\** *}}T{{[0-9]\.[XYZW]}}, KC0[2].Z, literal.y
; CHECK: ADD {{\** *}}T{{[0-9]\.[XYZW]}}, KC0[2].Z, literal.x
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.0
define void @float_literal(float addrspace(1)* %out, float %in) {
entry:

View File

@ -4,7 +4,7 @@
; FUNC-LABEL: {{^}}read_workdim:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[2].Z
; EG: MOV [[VAL]], KC0[2].Z
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0xb
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x2c

View File

@ -3,7 +3,7 @@
; RUN: llc < %s -march=amdgcn -mcpu=tonga -verify-machineinstrs | FileCheck --check-prefix=SI %s
; R600: {{^}}amdgpu_trunc:
; R600: TRUNC {{\*? *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z
; R600: TRUNC T{{[0-9]+\.[XYZW]}}, KC0[2].Z
; SI: {{^}}amdgpu_trunc:
; SI: v_trunc_f32

View File

@ -5,7 +5,7 @@
; FUNC-LABEL: {{^}}local_size_x:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[1].Z
; EG: MOV [[VAL]], KC0[1].Z
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x6
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x18
@ -23,7 +23,7 @@ entry:
; FUNC-LABEL: {{^}}local_size_y:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[1].W
; EG: MOV [[VAL]], KC0[1].W
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x7
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x1c
@ -38,7 +38,7 @@ entry:
; FUNC-LABEL: {{^}}local_size_z:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV * [[VAL]], KC0[2].X
; EG: MOV [[VAL]], KC0[2].X
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x8
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x20

View File

@ -153,7 +153,7 @@ define void @trunc_i64_or_to_i32(i32 addrspace(1)* %out, i64 %a, i64 %b) {
}
; FUNC-LABEL: {{^}}or_i1:
; EG: OR_INT * {{\** *}}T{{[0-9]+\.[XYZW], PS, PV\.[XYZW]}}
; EG: OR_INT {{\** *}}T{{[0-9]+\.[XYZW], PV\.[XYZW], PS}}
; SI: s_or_b64 s[{{[0-9]+:[0-9]+}}], vcc, s[{{[0-9]+:[0-9]+}}]
define void @or_i1(i32 addrspace(1)* %out, float addrspace(1)* %in0, float addrspace(1)* %in1) {

View File

@ -5,8 +5,8 @@
; SET*DX10 instructions.
; CHECK: {{^}}fcmp_une_select_fptosi:
; CHECK: LSHR
; CHECK-NEXT: SETNE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETNE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_une_select_fptosi(i32 addrspace(1)* %out, float %in) {
entry:
@ -19,8 +19,8 @@ entry:
}
; CHECK: {{^}}fcmp_une_select_i32:
; CHECK: LSHR
; CHECK-NEXT: SETNE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETNE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_une_select_i32(i32 addrspace(1)* %out, float %in) {
entry:
@ -31,8 +31,8 @@ entry:
}
; CHECK: {{^}}fcmp_oeq_select_fptosi:
; CHECK: LSHR
; CHECK-NEXT: SETE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_oeq_select_fptosi(i32 addrspace(1)* %out, float %in) {
entry:
@ -45,8 +45,8 @@ entry:
}
; CHECK: {{^}}fcmp_oeq_select_i32:
; CHECK: LSHR
; CHECK-NEXT: SETE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_oeq_select_i32(i32 addrspace(1)* %out, float %in) {
entry:
@ -57,8 +57,8 @@ entry:
}
; CHECK: {{^}}fcmp_ogt_select_fptosi:
; CHECK: LSHR
; CHECK-NEXT: SETGT_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETGT_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_ogt_select_fptosi(i32 addrspace(1)* %out, float %in) {
entry:
@ -71,8 +71,8 @@ entry:
}
; CHECK: {{^}}fcmp_ogt_select_i32:
; CHECK: LSHR
; CHECK-NEXT: SETGT_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETGT_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_ogt_select_i32(i32 addrspace(1)* %out, float %in) {
entry:
@ -83,8 +83,8 @@ entry:
}
; CHECK: {{^}}fcmp_oge_select_fptosi:
; CHECK: LSHR
; CHECK-NEXT: SETGE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETGE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_oge_select_fptosi(i32 addrspace(1)* %out, float %in) {
entry:
@ -97,8 +97,8 @@ entry:
}
; CHECK: {{^}}fcmp_oge_select_i32:
; CHECK: LSHR
; CHECK-NEXT: SETGE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.y,
; CHECK: SETGE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, KC0[2].Z, literal.x,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_oge_select_i32(i32 addrspace(1)* %out, float %in) {
entry:
@ -109,8 +109,8 @@ entry:
}
; CHECK: {{^}}fcmp_ole_select_fptosi:
; CHECK: LSHR
; CHECK-NEXT: SETGE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.y, KC0[2].Z,
; CHECK: SETGE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_ole_select_fptosi(i32 addrspace(1)* %out, float %in) {
entry:
@ -123,8 +123,8 @@ entry:
}
; CHECK: {{^}}fcmp_ole_select_i32:
; CHECK: LSHR
; CHECK-NEXT: SETGE_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.y, KC0[2].Z,
; CHECK: SETGE_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_ole_select_i32(i32 addrspace(1)* %out, float %in) {
entry:
@ -135,8 +135,8 @@ entry:
}
; CHECK: {{^}}fcmp_olt_select_fptosi:
; CHECK: LSHR
; CHECK-NEXT: SETGT_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.y, KC0[2].Z,
; CHECK: SETGT_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_olt_select_fptosi(i32 addrspace(1)* %out, float %in) {
entry:
@ -149,8 +149,8 @@ entry:
}
; CHECK: {{^}}fcmp_olt_select_i32:
; CHECK: LSHR
; CHECK-NEXT: SETGT_DX10 * {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.y, KC0[2].Z,
; CHECK: SETGT_DX10 {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z,
; CHECK-NEXT: LSHR
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @fcmp_olt_select_i32(i32 addrspace(1)* %out, float %in) {
entry:

View File

@ -12,8 +12,8 @@ declare i32 @llvm.r600.read.tidig.x() nounwind readnone
; SI: buffer_store_dword [[EXTRACT]],
; EG: MEM_{{.*}} STORE_{{.*}} [[RES:T[0-9]+\.[XYZW]]], [[ADDR:T[0-9]+.[XYZW]]]
; EG: LSHR * [[ADDR]]
; EG: BFE_INT * [[RES]], {{.*}}, 0.0, 1
; EG: BFE_INT [[RES]], {{.*}}, 0.0, 1
; EG-NEXT: LSHR * [[ADDR]]
define void @sext_in_reg_i1_i32(i32 addrspace(1)* %out, i32 %in) {
%shl = shl i32 %in, 31
%sext = ashr i32 %shl, 31

View File

@ -53,14 +53,14 @@ define void @shl_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> addrspace(1)* %in
ret void
}
;EG-LABEL: {{^}}shl_i64:
;EG: {{^}}shl_i64:
;EG: SUB_INT {{\*? *}}[[COMPSH:T[0-9]+\.[XYZW]]], {{literal.[xy]}}, [[SHIFT:T[0-9]+\.[XYZW]]]
;EG: LSHR {{\* *}}[[TEMP:T[0-9]+\.[XYZW]]], [[OPLO:T[0-9]+\.[XYZW]]], {{[[COMPSH]]|PV.[XYZW]}}
;EG-DAG: ADD_INT {{\*? *}}[[BIGSH:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
;EG-DAG: LSHR {{\*? *}}[[OVERF:T[0-9]+\.[XYZW]]], {{[[TEMP]]|PV.[XYZW]}}, 1
;EG: LSHR {{\*? *}}[[OVERF:T[0-9]+\.[XYZW]]], {{[[TEMP]]|PV.[XYZW]}}, 1
;EG_CHECK-DAG: ADD_INT {{\*? *}}[[BIGSH:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
;EG-DAG: LSHL {{\*? *}}[[HISMTMP:T[0-9]+\.[XYZW]]], [[OPHI:T[0-9]+\.[XYZW]]], [[SHIFT]]
;EG-DAG: OR_INT {{\*? *}}[[HISM:T[0-9]+\.[XYZW]]], {{[[HISMTMP]]|PV.[XYZW]|PS}}, {{[[OVERF]]|PV.[XYZW]}}
;EG-DAG: LSHL {{\*? *}}[[LOSM:T[0-9]+\.[XYZW]]], [[OPLO]], {{PS|[[SHIFT]]|PV.[XYZW]}}
;EG-DAG: OR_INT {{\*? *}}[[HISM:T[0-9]+\.[XYZW]]], {{[[HISMTMP]]|PV.[XYZW]}}, {{[[OVERF]]|PV.[XYZW]}}
;EG-DAG: LSHL {{\*? *}}[[LOSM:T[0-9]+\.[XYZW]]], [[OPLO]], {{PS|[[SHIFT]]}}
;EG-DAG: SETGT_UINT {{\*? *}}[[RESC:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
;EG-DAG: CNDE_INT {{\*? *}}[[RESLO:T[0-9]+\.[XYZW]]], {{T[0-9]+\.[XYZW]}}
;EG-DAG: CNDE_INT {{\*? *}}[[RESHI:T[0-9]+\.[XYZW]]], {{T[0-9]+\.[XYZW], .*}}, 0.0
@ -80,7 +80,7 @@ define void @shl_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %in) {
ret void
}
;EG-LABEL: {{^}}shl_v2i64:
;EG: {{^}}shl_v2i64:
;EG-DAG: SUB_INT {{\*? *}}[[COMPSHA:T[0-9]+\.[XYZW]]], {{literal.[xy]}}, [[SHA:T[0-9]+\.[XYZW]]]
;EG-DAG: SUB_INT {{\*? *}}[[COMPSHB:T[0-9]+\.[XYZW]]], {{literal.[xy]}}, [[SHB:T[0-9]+\.[XYZW]]]
;EG-DAG: LSHR {{\*? *}}[[COMPSHA]]

View File

@ -70,11 +70,11 @@ entry:
;EG-LABEL: {{^}}ashr_i64_2:
;EG: SUB_INT {{\*? *}}[[COMPSH:T[0-9]+\.[XYZW]]], {{literal.[xy]}}, [[SHIFT:T[0-9]+\.[XYZW]]]
;EG: LSHL {{\* *}}[[TEMP:T[0-9]+\.[XYZW]]], [[OPHI:T[0-9]+\.[XYZW]]], {{[[COMPSH]]|PV.[XYZW]}}
;EG-DAG: ADD_INT {{\*? *}}[[BIGSH:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
;EG-DAG: LSHL {{\*? *}}[[OVERF:T[0-9]+\.[XYZW]]], {{[[TEMP]]|PV.[XYZW]}}, 1
;EG: LSHL {{\*? *}}[[OVERF:T[0-9]+\.[XYZW]]], {{[[TEMP]]|PV.[XYZW]}}, 1
;EG_CHECK-DAG: ADD_INT {{\*? *}}[[BIGSH:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
;EG-DAG: LSHR {{\*? *}}[[LOSMTMP:T[0-9]+\.[XYZW]]], [[OPLO:T[0-9]+\.[XYZW]]], [[SHIFT]]
;EG-DAG: OR_INT {{\*? *}}[[LOSM:T[0-9]+\.[XYZW]]], {{[[LOSMTMP]]|PV.[XYZW]|PS}}, {{[[OVERF]]|PV.[XYZW]}}
;EG-DAG: ASHR {{\*? *}}[[HISM:T[0-9]+\.[XYZW]]], [[OPHI]], {{PS|PV.[XYZW]|[[SHIFT]]}}
;EG-DAG: OR_INT {{\*? *}}[[LOSM:T[0-9]+\.[XYZW]]], {{[[LOSMTMP]]|PV.[XYZW]}}, {{[[OVERF]]|PV.[XYZW]}}
;EG-DAG: ASHR {{\*? *}}[[HISM:T[0-9]+\.[XYZW]]], [[OPHI]], {{PS|[[SHIFT]]}}
;EG-DAG: ASHR {{\*? *}}[[LOBIG:T[0-9]+\.[XYZW]]], [[OPHI]], literal
;EG-DAG: ASHR {{\*? *}}[[HIBIG:T[0-9]+\.[XYZW]]], [[OPHI]], literal
;EG-DAG: SETGT_UINT {{\*? *}}[[RESC:T[0-9]+\.[XYZW]]], [[SHIFT]], literal

View File

@ -65,14 +65,14 @@ define void @lshr_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> addrspace(1)* %i
; EG: SUB_INT {{\*? *}}[[COMPSH:T[0-9]+\.[XYZW]]], {{literal.[xy]}}, [[SHIFT:T[0-9]+\.[XYZW]]]
; EG: LSHL {{\* *}}[[TEMP:T[0-9]+\.[XYZW]]], [[OPHI:T[0-9]+\.[XYZW]]], {{[[COMPSH]]|PV.[XYZW]}}
; EG: LSHL {{\*? *}}[[OVERF:T[0-9]+\.[XYZW]]], {{[[TEMP]]|PV.[XYZW]}}, 1
; EG-DAG: ADD_INT {{\*? *}}[[BIGSH:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
; EG-DAG: LSHL {{\*? *}}[[OVERF:T[0-9]+\.[XYZW]]], {{[[TEMP]]|PV.[XYZW]}}, 1
; EG-DAG: LSHR {{\*? *}}[[LOSMTMP:T[0-9]+\.[XYZW]]], [[OPLO:T[0-9]+\.[XYZW]]], [[SHIFT]]
; EG-DAG: OR_INT {{\*? *}}[[LOSM:T[0-9]+\.[XYZW]]], {{[[LOSMTMP]]|PV.[XYZW]|PS}}, {{[[OVERF]]|PV.[XYZW]}}
; EG-DAG: LSHR {{\*? *}}[[HISM:T[0-9]+\.[XYZW]]], [[OPHI]], {{PS|[[SHIFT]]|PV\.[XYZW]}}
; EG-DAG: OR_INT {{\*? *}}[[LOSM:T[0-9]+\.[XYZW]]], {{[[LOSMTMP]]|PV.[XYZW]}}, {{[[OVERF]]|PV.[XYZW]}}
; EG-DAG: LSHR {{\*? *}}[[HISM:T[0-9]+\.[XYZW]]], [[OPHI]], {{PS|[[SHIFT]]}}
; EG-DAG: LSHR {{\*? *}}[[LOBIG:T[0-9]+\.[XYZW]]], [[OPHI]], {{PS|[[SHIFT]]}}
; EG-DAG: SETGT_UINT {{\*? *}}[[RESC:T[0-9]+\.[XYZW]]], [[SHIFT]], literal
; EG-DAG: CNDE_INT {{\*? *}}[[RESLO:T[0-9]+\.[XYZW]]], {{T[0-9]+\.[XYZW]|PS}}
; EG-DAG: LSHR {{\*? *}}[[LOBIG:T[0-9]+\.[XYZW]]], [[OPHI]], [[SHIFT]]
; EG-DAG: CNDE_INT {{\*? *}}[[RESLO:T[0-9]+\.[XYZW]]], {{T[0-9]+\.[XYZW]}}
; EG-DAG: CNDE_INT {{\*? *}}[[RESHI:T[0-9]+\.[XYZW]]], {{T[0-9]+\.[XYZW], .*}}, 0.0
define void @lshr_i64(i64 addrspace(1)* %out, i64 addrspace(1)* %in) {
%b_ptr = getelementptr i64, i64 addrspace(1)* %in, i64 1

View File

@ -3,8 +3,8 @@
; These tests are for condition codes that are not supported by the hardware
; CHECK-LABEL: {{^}}slt:
; CHECK: LSHR
; CHECK-NEXT: SETGT_INT {{\** *}}T{{[0-9]+\.[XYZW]}}, {{literal\.[xy]}}, KC0[2].Z
; CHECK: SETGT_INT {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z
; CHECK-NEXT: LSHR
; CHECK-NEXT: 5(7.006492e-45)
define void @slt(i32 addrspace(1)* %out, i32 %in) {
entry:
@ -15,8 +15,8 @@ entry:
}
; CHECK-LABEL: {{^}}ult_i32:
; CHECK: LSHR
; CHECK-NEXT: SETGT_UINT {{\** *}}T{{[0-9]+\.[XYZW]}}, {{literal\.[xy]}}, KC0[2].Z
; CHECK: SETGT_UINT {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z
; CHECK-NEXT: LSHR
; CHECK-NEXT: 5(7.006492e-45)
define void @ult_i32(i32 addrspace(1)* %out, i32 %in) {
entry:
@ -40,8 +40,8 @@ entry:
}
; CHECK-LABEL: {{^}}ult_float_native:
; CHECK: LSHR
; CHECK-NEXT: SETGE {{\*? *}}T{{[0-9]\.[XYZW]}}, KC0[2].Z, {{literal\.[xy]}}
; CHECK: SETGE T{{[0-9]\.[XYZW]}}, KC0[2].Z, literal.x
; CHECK-NEXT: LSHR *
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @ult_float_native(float addrspace(1)* %out, float %in) {
entry:
@ -52,8 +52,8 @@ entry:
}
; CHECK-LABEL: {{^}}olt:
; CHECK: LSHR
; CHECK-NEXT: SETGT {{\*? *}}T{{[0-9]+\.[XYZW]}}, {{literal\.[xy]}}, KC0[2].Z
; CHECK: SETGT T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z
; CHECK-NEXT: LSHR *
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @olt(float addrspace(1)* %out, float %in) {
entry:
@ -64,8 +64,8 @@ entry:
}
; CHECK-LABEL: {{^}}sle:
; CHECK: LSHR
; CHECK-NEXT: SETGT_INT {{\** *}}T{{[0-9]+\.[XYZW]}}, {{literal\.[xy]}}, KC0[2].Z
; CHECK: SETGT_INT {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z
; CHECK-NEXT: LSHR
; CHECK-NEXT: 6(8.407791e-45)
define void @sle(i32 addrspace(1)* %out, i32 %in) {
entry:
@ -76,8 +76,8 @@ entry:
}
; CHECK-LABEL: {{^}}ule_i32:
; CHECK: LSHR
; CHECK-NEXT: SETGT_UINT {{\** *}}T{{[0-9]+\.[XYZW]}}, {{literal\.[xy]}}, KC0[2].Z
; CHECK: SETGT_UINT {{\** *}}T{{[0-9]+\.[XYZW]}}, literal.x, KC0[2].Z
; CHECK-NEXT: LSHR
; CHECK-NEXT: 6(8.407791e-45)
define void @ule_i32(i32 addrspace(1)* %out, i32 %in) {
entry:
@ -101,8 +101,8 @@ entry:
}
; CHECK-LABEL: {{^}}ule_float_native:
; CHECK: LSHR
; CHECK-NEXT: SETGT {{\*? *}}T{{[0-9]\.[XYZW]}}, KC0[2].Z, {{literal\.[xy]}}
; CHECK: SETGT T{{[0-9]\.[XYZW]}}, KC0[2].Z, literal.x
; CHECK-NEXT: LSHR *
; CHECK-NEXT: 1084227584(5.000000e+00)
define void @ule_float_native(float addrspace(1)* %out, float %in) {
entry:
@ -113,8 +113,8 @@ entry:
}
; CHECK-LABEL: {{^}}ole:
; CHECK: LSHR
; CHECK-NEXT: SETGE {{\*? *}}T{{[0-9]\.[XYZW]}}, {{literal\.[xy]}}, KC0[2].Z
; CHECK: SETGE T{{[0-9]\.[XYZW]}}, literal.x, KC0[2].Z
; CHECK-NEXT: LSHR *
; CHECK-NEXT:1084227584(5.000000e+00)
define void @ole(float addrspace(1)* %out, float %in) {
entry:

View File

@ -7,7 +7,7 @@
; FUNC-LABEL: {{^}}ngroups_x:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV {{\*? *}}[[VAL]], KC0[0].X
; EG: MOV [[VAL]], KC0[0].X
; HSA: .amd_kernel_code_t
@ -38,7 +38,7 @@ entry:
; FUNC-LABEL: {{^}}ngroups_y:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV {{\*? *}}[[VAL]], KC0[0].Y
; EG: MOV [[VAL]], KC0[0].Y
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x1
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x4
@ -53,7 +53,7 @@ entry:
; FUNC-LABEL: {{^}}ngroups_z:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV {{\*? *}}[[VAL]], KC0[0].Z
; EG: MOV [[VAL]], KC0[0].Z
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x2
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x8
@ -68,7 +68,7 @@ entry:
; FUNC-LABEL: {{^}}global_size_x:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV {{\*? *}}[[VAL]], KC0[0].W
; EG: MOV [[VAL]], KC0[0].W
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x3
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0xc
@ -83,7 +83,7 @@ entry:
; FUNC-LABEL: {{^}}global_size_y:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV {{\*? *}}[[VAL]], KC0[1].X
; EG: MOV [[VAL]], KC0[1].X
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x4
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x10
@ -98,7 +98,7 @@ entry:
; FUNC-LABEL: {{^}}global_size_z:
; EG: MEM_RAT_CACHELESS STORE_RAW [[VAL:T[0-9]+\.X]]
; EG: MOV {{\*? *}}[[VAL]], KC0[1].Y
; EG: MOV [[VAL]], KC0[1].Y
; SI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x5
; VI-NOHSA: s_load_dword [[VAL:s[0-9]+]], s[0:1], 0x14

View File

@ -38,7 +38,7 @@ define void @xor_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> addrspace(1)* %in
}
; FUNC-LABEL: {{^}}xor_i1:
; EG: XOR_INT {{\** *}}{{T[0-9]+\.[XYZW]}}, {{PS|PV\.[XYZW]}}, {{PS|PV\.[XYZW]}}
; EG: XOR_INT {{\** *}}T{{[0-9]+\.[XYZW], PV\.[XYZW], PS}}
; SI-DAG: v_cmp_le_f32_e32 [[CMP0:vcc]], 0, {{v[0-9]+}}
; SI-DAG: v_cmp_le_f32_e64 [[CMP1:s\[[0-9]+:[0-9]+\]]], 1.0, {{v[0-9]+}}