forked from OSchip/llvm-project
Support sparse tensor output.
Add convertFromMLIRSparseTensor to the supporting C shared library to convert SparseTensorStorage to COO-flavor format. Add Python routine sparse_tensor_to_coo_tensor to convert sparse tensor storage pointer to numpy values for COO-flavor format tensor. Add a Python test for sparse tensor output. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D115557
This commit is contained in:
parent
82de8df26f
commit
2f49e6b0db
|
@ -1071,6 +1071,59 @@ void *convertToMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape,
|
|||
rank, shape, perm.data(), sparse.data(), tensor);
|
||||
}
|
||||
|
||||
/// Converts a sparse tensor to COO-flavored format expressed using C-style
|
||||
/// data structures. The expected output parameters are pointers for these
|
||||
/// values:
|
||||
///
|
||||
/// rank: rank of tensor
|
||||
/// nse: number of specified elements (usually the nonzeros)
|
||||
/// shape: array with dimension size for each rank
|
||||
/// values: a "nse" array with values for all specified elements
|
||||
/// indices: a flat "nse x rank" array with indices for all specified elements
|
||||
///
|
||||
/// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned
|
||||
/// from convertToMLIRSparseTensor.
|
||||
///
|
||||
// TODO: Currently, values are copied from SparseTensorStorage to
|
||||
// SparseTensorCOO, then to the output. We may want to reduce the number of
|
||||
// copies.
|
||||
//
|
||||
// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed
|
||||
//
|
||||
void convertFromMLIRSparseTensor(void *tensor, uint64_t *p_rank,
|
||||
uint64_t *p_nse, uint64_t **p_shape,
|
||||
double **p_values, uint64_t **p_indices) {
|
||||
SparseTensorStorage<uint64_t, uint64_t, double> *sparse_tensor =
|
||||
static_cast<SparseTensorStorage<uint64_t, uint64_t, double> *>(tensor);
|
||||
uint64_t rank = sparse_tensor->getRank();
|
||||
std::vector<uint64_t> perm(rank);
|
||||
std::iota(perm.begin(), perm.end(), 0);
|
||||
SparseTensorCOO<double> *coo = sparse_tensor->toCOO(perm.data());
|
||||
|
||||
const std::vector<Element<double>> &elements = coo->getElements();
|
||||
uint64_t nse = elements.size();
|
||||
|
||||
uint64_t *shape = new uint64_t[rank];
|
||||
for (uint64_t i = 0; i < rank; i++)
|
||||
shape[i] = coo->getSizes()[i];
|
||||
|
||||
double *values = new double[nse];
|
||||
uint64_t *indices = new uint64_t[rank * nse];
|
||||
|
||||
for (uint64_t i = 0, base = 0; i < nse; i++) {
|
||||
values[i] = elements[i].value;
|
||||
for (uint64_t j = 0; j < rank; j++)
|
||||
indices[base + j] = elements[i].indices[j];
|
||||
base += rank;
|
||||
}
|
||||
|
||||
delete coo;
|
||||
*p_rank = rank;
|
||||
*p_nse = nse;
|
||||
*p_shape = shape;
|
||||
*p_values = values;
|
||||
*p_indices = indices;
|
||||
}
|
||||
} // extern "C"
|
||||
|
||||
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|
||||
|
|
|
@ -0,0 +1,132 @@
|
|||
# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s
|
||||
|
||||
import ctypes
|
||||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
|
||||
import mlir.all_passes_registration
|
||||
|
||||
from mlir import ir
|
||||
from mlir import runtime as rt
|
||||
from mlir import execution_engine
|
||||
from mlir import passmanager
|
||||
from mlir.dialects import sparse_tensor as st
|
||||
from mlir.dialects import builtin
|
||||
from mlir.dialects.linalg.opdsl import lang as dsl
|
||||
|
||||
_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(_SCRIPT_PATH)
|
||||
from tools import np_to_sparse_tensor as test_tools
|
||||
|
||||
# TODO: Use linalg_structured_op to generate the kernel after making it to
|
||||
# handle sparse tensor outputs.
|
||||
_KERNEL_STR = """
|
||||
#DCSR = #sparse_tensor.encoding<{
|
||||
dimLevelType = [ "compressed", "compressed" ]
|
||||
}>
|
||||
|
||||
#trait_add_elt = {
|
||||
indexing_maps = [
|
||||
affine_map<(i,j) -> (i,j)>, // A
|
||||
affine_map<(i,j) -> (i,j)>, // B
|
||||
affine_map<(i,j) -> (i,j)> // X (out)
|
||||
],
|
||||
iterator_types = ["parallel", "parallel"],
|
||||
doc = "X(i,j) = A(i,j) + B(i,j)"
|
||||
}
|
||||
|
||||
func @sparse_add_elt(
|
||||
%arga: tensor<3x4xf64, #DCSR>, %argb: tensor<3x4xf64, #DCSR>) -> tensor<3x4xf64, #DCSR> {
|
||||
%c3 = arith.constant 3 : index
|
||||
%c4 = arith.constant 4 : index
|
||||
%argx = sparse_tensor.init [%c3, %c4] : tensor<3x4xf64, #DCSR>
|
||||
%0 = linalg.generic #trait_add_elt
|
||||
ins(%arga, %argb: tensor<3x4xf64, #DCSR>, tensor<3x4xf64, #DCSR>)
|
||||
outs(%argx: tensor<3x4xf64, #DCSR>) {
|
||||
^bb(%a: f64, %b: f64, %x: f64):
|
||||
%1 = arith.addf %a, %b : f64
|
||||
linalg.yield %1 : f64
|
||||
} -> tensor<3x4xf64, #DCSR>
|
||||
return %0 : tensor<3x4xf64, #DCSR>
|
||||
}
|
||||
|
||||
func @main(%ad: tensor<3x4xf64>, %bd: tensor<3x4xf64>) -> tensor<3x4xf64, #DCSR>
|
||||
attributes { llvm.emit_c_interface } {
|
||||
%a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, #DCSR>
|
||||
%b = sparse_tensor.convert %bd : tensor<3x4xf64> to tensor<3x4xf64, #DCSR>
|
||||
%0 = call @sparse_add_elt(%a, %b) : (tensor<3x4xf64, #DCSR>, tensor<3x4xf64, #DCSR>) -> tensor<3x4xf64, #DCSR>
|
||||
return %0 : tensor<3x4xf64, #DCSR>
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
class _SparseCompiler:
|
||||
"""Sparse compiler passes."""
|
||||
|
||||
def __init__(self):
|
||||
self.pipeline = (
|
||||
f'sparsification,'
|
||||
f'sparse-tensor-conversion,'
|
||||
f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),'
|
||||
f'convert-scf-to-std,'
|
||||
f'func-bufferize,'
|
||||
f'tensor-constant-bufferize,'
|
||||
f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
|
||||
f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
|
||||
f'lower-affine,'
|
||||
f'convert-memref-to-llvm,'
|
||||
f'convert-std-to-llvm,'
|
||||
f'reconcile-unrealized-casts')
|
||||
|
||||
def __call__(self, module: ir.Module):
|
||||
passmanager.PassManager.parse(self.pipeline).run(module)
|
||||
|
||||
|
||||
def _run_test(support_lib, kernel):
|
||||
"""Compiles, runs and checks results."""
|
||||
module = ir.Module.parse(kernel)
|
||||
_SparseCompiler()(module)
|
||||
engine = execution_engine.ExecutionEngine(
|
||||
module, opt_level=0, shared_libs=[support_lib])
|
||||
|
||||
# Set up numpy inputs and buffer for output.
|
||||
a = np.array(
|
||||
[[1.1, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 6.6, 0.0]],
|
||||
np.float64)
|
||||
b = np.array(
|
||||
[[1.1, 0.0, 0.0, 2.8], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],
|
||||
np.float64)
|
||||
|
||||
mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
|
||||
mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
|
||||
|
||||
# The sparse tensor output is a pointer to pointer of char.
|
||||
out = ctypes.c_char(0)
|
||||
mem_out = ctypes.pointer(ctypes.pointer(out))
|
||||
|
||||
# Invoke the kernel.
|
||||
engine.invoke('main', mem_a, mem_b, mem_out)
|
||||
|
||||
# Retrieve and check the result.
|
||||
rank, nse, shape, values, indices = test_tools.sparse_tensor_to_coo_tensor(
|
||||
support_lib, mem_out[0], np.float64)
|
||||
|
||||
# CHECK: PASSED
|
||||
if np.allclose(values, [2.2, 2.8, 6.6]) and np.allclose(
|
||||
indices, [[0, 0], [0, 3], [2, 2]]):
|
||||
print('PASSED')
|
||||
else:
|
||||
quit('FAILURE')
|
||||
|
||||
|
||||
def test_elementwise_add():
|
||||
# Obtain path to runtime support library.
|
||||
support_lib = os.getenv('SUPPORT_LIB')
|
||||
assert support_lib is not None, 'SUPPORT_LIB is undefined'
|
||||
assert os.path.exists(support_lib), f'{support_lib} does not exist'
|
||||
with ir.Context() as ctx, ir.Location.unknown():
|
||||
_run_test(support_lib, _KERNEL_STR)
|
||||
|
||||
|
||||
test_elementwise_add()
|
|
@ -0,0 +1,2 @@
|
|||
# Files in this directory are tools, not tests.
|
||||
config.unsupported = True
|
|
@ -0,0 +1,74 @@
|
|||
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
# See https://llvm.org/LICENSE.txt for license information.
|
||||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
# This file contains functions to process sparse tensor outputs.
|
||||
|
||||
import ctypes
|
||||
import functools
|
||||
import numpy as np
|
||||
|
||||
|
||||
@functools.lru_cache()
|
||||
def _get_c_shared_lib(lib_name: str):
|
||||
"""Loads and returns the requested C shared library.
|
||||
|
||||
Args:
|
||||
lib_name: A string representing the C shared library.
|
||||
|
||||
Returns:
|
||||
The C shared library.
|
||||
|
||||
Raises:
|
||||
OSError: If there is any problem in loading the shared library.
|
||||
ValueError: If the shared library doesn't contain the needed routine.
|
||||
"""
|
||||
# This raises OSError exception if there is any problem in loading the shared
|
||||
# library.
|
||||
c_lib = ctypes.CDLL(lib_name)
|
||||
|
||||
try:
|
||||
c_lib.convertFromMLIRSparseTensor.restype = ctypes.c_void_p
|
||||
except Exception as e:
|
||||
raise ValueError('Missing function convertFromMLIRSparseTensor from '
|
||||
f'the C shared library: {e} ') from e
|
||||
|
||||
return c_lib
|
||||
|
||||
|
||||
def sparse_tensor_to_coo_tensor(support_lib, sparse, dtype):
|
||||
"""Converts a sparse tensor to COO-flavored format.
|
||||
|
||||
Args:
|
||||
support_lib: A string for the supporting C shared library.
|
||||
sparse: A ctypes.pointer to the sparse tensor descriptor.
|
||||
dtype: The numpy data type for the tensor elements.
|
||||
|
||||
Returns:
|
||||
A tuple that contains the following values:
|
||||
rank: An integer for the rank of the tensor.
|
||||
nse: An interger for the number of non-zero values in the tensor.
|
||||
shape: A 1D numpy array of integers, for the shape of the tensor.
|
||||
values: A 1D numpy array, for the non-zero values in the tensor.
|
||||
indices: A 2D numpy array of integers, representing the indices for the
|
||||
non-zero values in the tensor.
|
||||
|
||||
Raises:
|
||||
OSError: If there is any problem in loading the shared library.
|
||||
ValueError: If the shared library doesn't contain the needed routine.
|
||||
"""
|
||||
c_lib = _get_c_shared_lib(support_lib)
|
||||
|
||||
rank = ctypes.c_ulonglong(0)
|
||||
nse = ctypes.c_ulonglong(0)
|
||||
shape = ctypes.POINTER(ctypes.c_ulonglong)()
|
||||
values = ctypes.POINTER(np.ctypeslib.as_ctypes_type(dtype))()
|
||||
indices = ctypes.POINTER(ctypes.c_ulonglong)()
|
||||
c_lib.convertFromMLIRSparseTensor(sparse, ctypes.byref(rank),
|
||||
ctypes.byref(nse), ctypes.byref(shape),
|
||||
ctypes.byref(values), ctypes.byref(indices))
|
||||
# Convert the returned values to the corresponding numpy types.
|
||||
shape = np.ctypeslib.as_array(shape, shape=[rank.value])
|
||||
values = np.ctypeslib.as_array(values, shape=[nse.value])
|
||||
indices = np.ctypeslib.as_array(indices, shape=[nse.value, rank.value])
|
||||
return rank, nse, shape, values, indices
|
Loading…
Reference in New Issue