[mlir][tosa] Add tosa.tile to linalg.generic lowering

Tiling operations are generic operations with modified indexing. Updated to to
linalg lowerings to perform this lowering.

Differential Revision: https://reviews.llvm.org/D99113
This commit is contained in:
Rob Suderman 2021-03-22 14:38:39 -07:00
parent 1bc33eb6a3
commit 2d72b675d5
2 changed files with 105 additions and 2 deletions

View File

@ -702,6 +702,11 @@ public:
ShapedType operandTy = operands.input1().getType().cast<ShapedType>();
ShapedType resultTy = reshape.getType().template cast<ShapedType>();
if (operandTy == resultTy) {
rewriter.replaceOp(reshape, args[0]);
return success();
}
if (!operandTy.hasStaticShape() || !resultTy.hasStaticShape())
return failure();
@ -1086,6 +1091,70 @@ public:
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
nestedBuilder.create<linalg::YieldOp>(op.getLoc(), *args.begin());
});
return success();
}
};
// This converter translate a tile operation to a reshape, broadcast, reshape.
// The first reshape minimally expands each tiled dimension to include a
// proceding size-1 dim. This dim is then broadcasted to the appropriate
// multiple.
struct TileConverter : public OpConversionPattern<tosa::TileOp> {
using OpConversionPattern<tosa::TileOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::TileOp op, ArrayRef<Value> args,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto input = op.input1();
auto inputTy = input.getType().cast<ShapedType>();
auto inputShape = inputTy.getShape();
auto resultTy = op.getType().cast<ShapedType>();
auto elementTy = inputTy.getElementType();
int64_t rank = inputTy.getRank();
if (!inputTy.hasStaticShape() || !resultTy.hasStaticShape())
return failure();
SmallVector<int64_t> multiples;
getValuesFromIntArrayAttribute(op.multiples(), multiples);
llvm::SmallVector<int64_t, 4> reshapeShape;
reshapeShape.reserve(rank * 2);
for (int i = 0; i < rank; i++) {
reshapeShape.push_back(1);
reshapeShape.push_back(inputShape[i]);
}
ShapedType reshapeTy = RankedTensorType::get(reshapeShape, elementTy);
Value reshape = rewriter.create<tosa::ReshapeOp>(
loc, reshapeTy, input, rewriter.getI64ArrayAttr(reshapeTy.getShape()));
// Broadcast the newly added dimensions to their appropriate multiple.
SmallVector<int64_t, 2> genericShape;
for (int i = 0; i < rank; i++) {
genericShape.push_back(multiples[i]);
genericShape.push_back(inputShape[i]);
}
auto initTensor = rewriter.create<linalg::InitTensorOp>(
op.getLoc(), ArrayRef<Value>({}), genericShape, elementTy);
SmallVector<AffineMap, 2> affineMaps = {
createAffineMapForType(reshapeTy, rewriter),
rewriter.getMultiDimIdentityMap(genericShape.size())};
auto genericOp = rewriter.create<linalg::GenericOp>(
loc, RankedTensorType::get(genericShape, elementTy), reshape,
ValueRange{initTensor}, affineMaps,
getNParallelLoopsAttrs(genericShape.size()),
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
nestedBuilder.create<linalg::YieldOp>(op.getLoc(), *args.begin());
});
rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
op, resultTy, genericOp.getResult(0),
rewriter.getI64ArrayAttr(resultTy.getShape()));
return success();
}
@ -1119,6 +1188,6 @@ void mlir::tosa::populateTosaToLinalgOnTensorsConversionPatterns(
IdentityNConverter<tosa::IdentityNOp>, ReduceConverter<tosa::ReduceMinOp>,
ReduceConverter<tosa::ReduceMaxOp>, ReduceConverter<tosa::ReduceSumOp>,
ReduceConverter<tosa::ReduceProdOp>, ConcatConverter, ReshapeConverter,
RescaleConverter, ReverseConverter, TransposeConverter, MatMulConverter,
FullyConnectedConverter>(patterns->getContext());
RescaleConverter, ReverseConverter, TileConverter, TransposeConverter,
MatMulConverter, FullyConnectedConverter>(patterns->getContext());
}

View File

@ -636,6 +636,40 @@ func @reverse(%arg0: tensor<5x4xi32>) -> () {
// CHECK: ^bb0(%arg1: i32, %arg2: i32):
// CHECK: linalg.yield %arg1 : i32
%1 = "tosa.reverse"(%arg0) {axis = 1 : i64} : (tensor<5x4xi32>) -> tensor<5x4xi32>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (0, d1, 0, d3)>
// CHECK: #[[$MAP3:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK: #[[$MAP4:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1)>
// CHECK: #[[$MAP5:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)>
// CHECK-LABEL: @tile
func @tile(%arg0 : tensor<2x3xi8>) -> () {
// CHECK: [[RESHAPE:%.+]] = linalg.tensor_reshape %arg0 [#[[$MAP0]], #[[$MAP1]]] : tensor<2x3xi8> into tensor<1x2x1x3xi8>
// CHECK: [[INIT:%.+]] = linalg.init_tensor [2, 2, 1, 3]
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP3]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins([[RESHAPE]] : tensor<1x2x1x3xi8>) outs([[INIT]] : tensor<2x2x1x3xi8>)
// CHECK: linalg.yield %arg1 : i8
// CHECK: linalg.tensor_reshape [[GENERIC]] [#[[$MAP0]], #[[$MAP1]]]
%0 = "tosa.tile"(%arg0) {multiples = [2, 1]} : (tensor<2x3xi8>) -> (tensor<4x3xi8>)
// CHECK: [[RESHAPE:%.+]] = linalg.tensor_reshape %arg0 [#[[$MAP0]], #[[$MAP1]]] : tensor<2x3xi8> into tensor<1x2x1x3xi8>
// CHECK: [[INIT:%.+]] = linalg.init_tensor [1, 2, 2, 3]
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP3]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins([[RESHAPE]] : tensor<1x2x1x3xi8>) outs([[INIT]] : tensor<1x2x2x3xi8>)
// CHECK: linalg.yield %arg1 : i8
// CHECK: linalg.tensor_reshape [[GENERIC]] [#[[$MAP4]], #[[$MAP5]]]
%1 = "tosa.tile"(%arg0) {multiples = [1, 2]} : (tensor<2x3xi8>) -> (tensor<2x6xi8>)
// CHECK: [[RESHAPE:%.+]] = linalg.tensor_reshape %arg0 [#[[$MAP0]], #[[$MAP1]]] : tensor<2x3xi8> into tensor<1x2x1x3xi8>
// CHECK: [[INIT:%.+]] = linalg.init_tensor [5, 2, 7, 3]
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP3]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins([[RESHAPE]] : tensor<1x2x1x3xi8>) outs([[INIT]] : tensor<5x2x7x3xi8>)
// CHECK: linalg.yield %arg1 : i8
// CHECK: linalg.tensor_reshape [[GENERIC]] [#[[$MAP4]], #[[$MAP5]]]
%2 = "tosa.tile"(%arg0) {multiples = [5, 7]} : (tensor<2x3xi8>) -> (tensor<10x21xi8>)
return
}