This patch de-pessimizes the calculation of loop trip counts in

ScalarEvolution in the presence of multiple exits. Previously all
loops exits had to have identical counts for a loop trip count to be
considered computable. This pessimization was implemented by calling
getBackedgeTakenCount(L) rather than getExitCount(L, ExitingBlock)
inside of ScalarEvolution::getSmallConstantTripCount() (see the FIXME
in the comments of that function). The pessimization was added to fix
a corner case involving undefined behavior (pr/16130). This patch more
precisely handles the undefined behavior case allowing the pessimization
to be removed.

ControlsExit replaces IsSubExpr to more precisely track the case where
undefined behavior is expected to occur. Because undefined behavior is
tracked more precisely we can remove MustExit from ExitLimit. MustExit
was used to track the case where the limit was computed potentially
assuming undefined behavior even if undefined behavior didn't necessarily
occur.

llvm-svn: 219517
This commit is contained in:
Mark Heffernan 2014-10-10 17:39:11 +00:00
parent 2132fbe21e
commit 2beab5f0b4
4 changed files with 335 additions and 377 deletions

View File

@ -261,24 +261,13 @@ namespace llvm {
/// loop exit's branch condition evaluates to the not-taken path. This is a
/// temporary pair of exact and max expressions that are eventually
/// summarized in ExitNotTakenInfo and BackedgeTakenInfo.
///
/// If MustExit is true, then the exit must be taken when the BECount
/// reaches Exact (and before surpassing Max). If MustExit is false, then
/// BECount may exceed Exact or Max if the loop exits via another branch. In
/// either case, the loop may exit early via another branch.
///
/// MustExit is true for most cases. However, an exit guarded by an
/// (in)equality on a nonunit stride may be skipped.
struct ExitLimit {
const SCEV *Exact;
const SCEV *Max;
bool MustExit;
/*implicit*/ ExitLimit(const SCEV *E)
: Exact(E), Max(E), MustExit(true) {}
/*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
ExitLimit(const SCEV *E, const SCEV *M, bool MustExit)
: Exact(E), Max(M), MustExit(MustExit) {}
ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
/// hasAnyInfo - Test whether this ExitLimit contains any computed
/// information, or whether it's all SCEVCouldNotCompute values.

View File

@ -673,6 +673,268 @@ static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
}
}
static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getValue()->getValue();
APInt B = C2->getValue()->getValue();
uint32_t ABW = A.getBitWidth();
uint32_t BBW = B.getBitWidth();
if (ABW > BBW)
B = B.sext(ABW);
else if (ABW < BBW)
A = A.sext(BBW);
return APIntOps::srem(A, B);
}
static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getValue()->getValue();
APInt B = C2->getValue()->getValue();
uint32_t ABW = A.getBitWidth();
uint32_t BBW = B.getBitWidth();
if (ABW > BBW)
B = B.sext(ABW);
else if (ABW < BBW)
A = A.sext(BBW);
return APIntOps::sdiv(A, B);
}
namespace {
struct FindSCEVSize {
int Size;
FindSCEVSize() : Size(0) {}
bool follow(const SCEV *S) {
++Size;
// Keep looking at all operands of S.
return true;
}
bool isDone() const {
return false;
}
};
}
// Returns the size of the SCEV S.
static inline int sizeOfSCEV(const SCEV *S) {
FindSCEVSize F;
SCEVTraversal<FindSCEVSize> ST(F);
ST.visitAll(S);
return F.Size;
}
namespace {
struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
public:
// Computes the Quotient and Remainder of the division of Numerator by
// Denominator.
static void divide(ScalarEvolution &SE, const SCEV *Numerator,
const SCEV *Denominator, const SCEV **Quotient,
const SCEV **Remainder) {
assert(Numerator && Denominator && "Uninitialized SCEV");
SCEVDivision D(SE, Numerator, Denominator);
// Check for the trivial case here to avoid having to check for it in the
// rest of the code.
if (Numerator == Denominator) {
*Quotient = D.One;
*Remainder = D.Zero;
return;
}
if (Numerator->isZero()) {
*Quotient = D.Zero;
*Remainder = D.Zero;
return;
}
// Split the Denominator when it is a product.
if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
const SCEV *Q, *R;
*Quotient = Numerator;
for (const SCEV *Op : T->operands()) {
divide(SE, *Quotient, Op, &Q, &R);
*Quotient = Q;
// Bail out when the Numerator is not divisible by one of the terms of
// the Denominator.
if (!R->isZero()) {
*Quotient = D.Zero;
*Remainder = Numerator;
return;
}
}
*Remainder = D.Zero;
return;
}
D.visit(Numerator);
*Quotient = D.Quotient;
*Remainder = D.Remainder;
}
SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
: SE(S), Denominator(Denominator) {
Zero = SE.getConstant(Denominator->getType(), 0);
One = SE.getConstant(Denominator->getType(), 1);
// By default, we don't know how to divide Expr by Denominator.
// Providing the default here simplifies the rest of the code.
Quotient = Zero;
Remainder = Numerator;
}
// Except in the trivial case described above, we do not know how to divide
// Expr by Denominator for the following functions with empty implementation.
void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
void visitUnknown(const SCEVUnknown *Numerator) {}
void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
void visitConstant(const SCEVConstant *Numerator) {
if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Quotient = SE.getConstant(sdiv(Numerator, D));
Remainder = SE.getConstant(srem(Numerator, D));
return;
}
}
void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
const SCEV *StartQ, *StartR, *StepQ, *StepR;
assert(Numerator->isAffine() && "Numerator should be affine");
divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
Numerator->getNoWrapFlags());
Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
Numerator->getNoWrapFlags());
}
void visitAddExpr(const SCEVAddExpr *Numerator) {
SmallVector<const SCEV *, 2> Qs, Rs;
Type *Ty = Denominator->getType();
for (const SCEV *Op : Numerator->operands()) {
const SCEV *Q, *R;
divide(SE, Op, Denominator, &Q, &R);
// Bail out if types do not match.
if (Ty != Q->getType() || Ty != R->getType()) {
Quotient = Zero;
Remainder = Numerator;
return;
}
Qs.push_back(Q);
Rs.push_back(R);
}
if (Qs.size() == 1) {
Quotient = Qs[0];
Remainder = Rs[0];
return;
}
Quotient = SE.getAddExpr(Qs);
Remainder = SE.getAddExpr(Rs);
}
void visitMulExpr(const SCEVMulExpr *Numerator) {
SmallVector<const SCEV *, 2> Qs;
Type *Ty = Denominator->getType();
bool FoundDenominatorTerm = false;
for (const SCEV *Op : Numerator->operands()) {
// Bail out if types do not match.
if (Ty != Op->getType()) {
Quotient = Zero;
Remainder = Numerator;
return;
}
if (FoundDenominatorTerm) {
Qs.push_back(Op);
continue;
}
// Check whether Denominator divides one of the product operands.
const SCEV *Q, *R;
divide(SE, Op, Denominator, &Q, &R);
if (!R->isZero()) {
Qs.push_back(Op);
continue;
}
// Bail out if types do not match.
if (Ty != Q->getType()) {
Quotient = Zero;
Remainder = Numerator;
return;
}
FoundDenominatorTerm = true;
Qs.push_back(Q);
}
if (FoundDenominatorTerm) {
Remainder = Zero;
if (Qs.size() == 1)
Quotient = Qs[0];
else
Quotient = SE.getMulExpr(Qs);
return;
}
if (!isa<SCEVUnknown>(Denominator)) {
Quotient = Zero;
Remainder = Numerator;
return;
}
// The Remainder is obtained by replacing Denominator by 0 in Numerator.
ValueToValueMap RewriteMap;
RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
cast<SCEVConstant>(Zero)->getValue();
Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
if (Remainder->isZero()) {
// The Quotient is obtained by replacing Denominator by 1 in Numerator.
RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
cast<SCEVConstant>(One)->getValue();
Quotient =
SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
return;
}
// Quotient is (Numerator - Remainder) divided by Denominator.
const SCEV *Q, *R;
const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
// This SCEV does not seem to simplify: fail the division here.
Quotient = Zero;
Remainder = Numerator;
return;
}
divide(SE, Diff, Denominator, &Q, &R);
assert(R == Zero &&
"(Numerator - Remainder) should evenly divide Denominator");
Quotient = Q;
}
private:
ScalarEvolution &SE;
const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
};
}
//===----------------------------------------------------------------------===//
@ -4078,19 +4340,10 @@ const SCEV *ScalarEvolution::createSCEV(Value *V) {
/// before taking the branch. For loops with multiple exits, it may not be the
/// number times that the loop header executes because the loop may exit
/// prematurely via another branch.
///
/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
/// loop exits. getExitCount() may return an exact count for this branch
/// assuming no-signed-wrap. The number of well-defined iterations may actually
/// be higher than this trip count if this exit test is skipped and the loop
/// exits via a different branch. Ideally, getExitCount() would know whether it
/// depends on a NSW assumption, and we would only fall back to a conservative
/// trip count in that case.
unsigned ScalarEvolution::
getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
BasicBlock *ExitingBlock) {
const SCEVConstant *ExitCount =
dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
if (!ExitCount)
return 0;
@ -4116,9 +4369,10 @@ getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
///
/// As explained in the comments for getSmallConstantTripCount, this assumes
/// that control exits the loop via ExitingBlock.
unsigned ScalarEvolution::
getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
const SCEV *ExitCount = getBackedgeTakenCount(L);
unsigned
ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
BasicBlock *ExitingBlock) {
const SCEV *ExitCount = getExitCount(L, ExitingBlock);
if (ExitCount == getCouldNotCompute())
return 1;
@ -4465,20 +4719,12 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
// non-exiting iterations. Partition the loop exits into two kinds:
// LoopMustExits and LoopMayExits.
//
// A LoopMustExit meets two requirements:
//
// (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
// test condition cannot be skipped (the tested variable has unit stride or
// the test is less-than or greater-than, rather than a strict inequality).
//
// (b) It must dominate the loop latch, hence must be tested on every loop
// iteration.
//
// If any computable LoopMustExit is found, then MaxBECount is the minimum
// EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
// conservatively the maximum EL.Max, where CouldNotCompute is considered
// greater than any computable EL.Max.
if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
// If the exit dominates the loop latch, it is a LoopMustExit otherwise it
// is a LoopMayExit. If any computable LoopMustExit is found, then
// MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
// MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
// considered greater than any computable EL.Max.
if (EL.Max != getCouldNotCompute() && Latch &&
DT->dominates(ExitBB, Latch)) {
if (!MustExitMaxBECount)
MustExitMaxBECount = EL.Max;
@ -4565,18 +4811,19 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
return getCouldNotCompute();
}
bool IsOnlyExit = (L->getExitingBlock() != nullptr);
TerminatorInst *Term = ExitingBlock->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
assert(BI->isConditional() && "If unconditional, it can't be in loop!");
// Proceed to the next level to examine the exit condition expression.
return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
BI->getSuccessor(1),
/*IsSubExpr=*/false);
/*ControlsExit=*/IsOnlyExit);
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
/*IsSubExpr=*/false);
/*ControlsExit=*/IsOnlyExit);
return getCouldNotCompute();
}
@ -4585,28 +4832,27 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
/// backedge of the specified loop will execute if its exit condition
/// were a conditional branch of ExitCond, TBB, and FBB.
///
/// @param IsSubExpr is true if ExitCond does not directly control the exit
/// branch. In this case, we cannot assume that the loop only exits when the
/// condition is true and cannot infer that failing to meet the condition prior
/// to integer wraparound results in undefined behavior.
/// @param ControlsExit is true if ExitCond directly controls the exit
/// branch. In this case, we can assume that the loop exits only if the
/// condition is true and can infer that failing to meet the condition prior to
/// integer wraparound results in undefined behavior.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
bool IsSubExpr) {
bool ControlsExit) {
// Check if the controlling expression for this loop is an And or Or.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
if (BO->getOpcode() == Instruction::And) {
// Recurse on the operands of the and.
bool EitherMayExit = L->contains(TBB);
ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
IsSubExpr || EitherMayExit);
ControlsExit && !EitherMayExit);
ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
IsSubExpr || EitherMayExit);
ControlsExit && !EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
bool MustExit = false;
if (EitherMayExit) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
@ -4621,7 +4867,6 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
MustExit = EL0.MustExit || EL1.MustExit;
} else {
// Both conditions must be true at the same time for the loop to exit.
// For now, be conservative.
@ -4630,21 +4875,19 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
if (EL0.Exact == EL1.Exact)
BECount = EL0.Exact;
MustExit = EL0.MustExit && EL1.MustExit;
}
return ExitLimit(BECount, MaxBECount, MustExit);
return ExitLimit(BECount, MaxBECount);
}
if (BO->getOpcode() == Instruction::Or) {
// Recurse on the operands of the or.
bool EitherMayExit = L->contains(FBB);
ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
IsSubExpr || EitherMayExit);
ControlsExit && !EitherMayExit);
ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
IsSubExpr || EitherMayExit);
ControlsExit && !EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
bool MustExit = false;
if (EitherMayExit) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
@ -4659,7 +4902,6 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
else
MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
MustExit = EL0.MustExit || EL1.MustExit;
} else {
// Both conditions must be false at the same time for the loop to exit.
// For now, be conservative.
@ -4668,17 +4910,16 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
MaxBECount = EL0.Max;
if (EL0.Exact == EL1.Exact)
BECount = EL0.Exact;
MustExit = EL0.MustExit && EL1.MustExit;
}
return ExitLimit(BECount, MaxBECount, MustExit);
return ExitLimit(BECount, MaxBECount);
}
}
// With an icmp, it may be feasible to compute an exact backedge-taken count.
// Proceed to the next level to examine the icmp.
if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
// Check for a constant condition. These are normally stripped out by
// SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
@ -4705,7 +4946,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
bool IsSubExpr) {
bool ControlsExit) {
// If the condition was exit on true, convert the condition to exit on false
ICmpInst::Predicate Cond;
@ -4757,7 +4998,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
switch (Cond) {
case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
if (EL.hasAnyInfo()) return EL;
break;
}
@ -4770,14 +5011,14 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: { // while (X < Y)
bool IsSigned = Cond == ICmpInst::ICMP_SLT;
ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
if (EL.hasAnyInfo()) return EL;
break;
}
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: { // while (X > Y)
bool IsSigned = Cond == ICmpInst::ICMP_SGT;
ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
if (EL.hasAnyInfo()) return EL;
break;
}
@ -4799,7 +5040,7 @@ ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
SwitchInst *Switch,
BasicBlock *ExitingBlock,
bool IsSubExpr) {
bool ControlsExit) {
assert(!L->contains(ExitingBlock) && "Not an exiting block!");
// Give up if the exit is the default dest of a switch.
@ -4812,7 +5053,7 @@ ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
// while (X != Y) --> while (X-Y != 0)
ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
if (EL.hasAnyInfo())
return EL;
@ -5685,7 +5926,7 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
/// effectively V != 0. We know and take advantage of the fact that this
/// expression only being used in a comparison by zero context.
ScalarEvolution::ExitLimit
ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
// If the value is a constant
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
@ -5779,37 +6020,30 @@ ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
else
MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
: -CR.getUnsignedMin());
return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
return ExitLimit(Distance, MaxBECount);
}
// If the recurrence is known not to wraparound, unsigned divide computes the
// back edge count. (Ideally we would have an "isexact" bit for udiv). We know
// that the value will either become zero (and thus the loop terminates), that
// the loop will terminate through some other exit condition first, or that
// the loop has undefined behavior. This means we can't "miss" the exit
// value, even with nonunit stride, and exit later via the same branch. Note
// that we can skip this exit if loop later exits via a different
// branch. Hence MustExit=false.
//
// This is only valid for expressions that directly compute the loop exit. It
// is invalid for subexpressions in which the loop may exit through this
// branch even if this subexpression is false. In that case, the trip count
// computed by this udiv could be smaller than the number of well-defined
// iterations.
if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
// If the step exactly divides the distance then unsigned divide computes the
// backedge count.
const SCEV *Q, *R;
ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
SCEVDivision::divide(SE, Distance, Step, &Q, &R);
if (R->isZero()) {
const SCEV *Exact =
getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
return ExitLimit(Exact, Exact, /*MustExit=*/false);
getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
return ExitLimit(Exact, Exact);
}
// If Step is a power of two that evenly divides Start we know that the loop
// will always terminate. Start may not be a constant so we just have the
// number of trailing zeros available. This is safe even in presence of
// overflow as the recurrence will overflow to exactly 0.
const APInt &StepV = StepC->getValue()->getValue();
if (StepV.isPowerOf2() &&
GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
// If the condition controls loop exit (the loop exits only if the expression
// is true) and the addition is no-wrap we can use unsigned divide to
// compute the backedge count. In this case, the step may not divide the
// distance, but we don't care because if the condition is "missed" the loop
// will have undefined behavior due to wrapping.
if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
const SCEV *Exact =
getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
return ExitLimit(Exact, Exact);
}
// Then, try to solve the above equation provided that Start is constant.
if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
@ -6630,13 +6864,13 @@ const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
/// specified less-than comparison will execute. If not computable, return
/// CouldNotCompute.
///
/// @param IsSubExpr is true when the LHS < RHS condition does not directly
/// control the branch. In this case, we can only compute an iteration count for
/// a subexpression that cannot overflow before evaluating true.
/// @param ControlsExit is true when the LHS < RHS condition directly controls
/// the branch (loops exits only if condition is true). In this case, we can use
/// NoWrapFlags to skip overflow checks.
ScalarEvolution::ExitLimit
ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool IsSigned,
bool IsSubExpr) {
bool ControlsExit) {
// We handle only IV < Invariant
if (!isLoopInvariant(RHS, L))
return getCouldNotCompute();
@ -6647,7 +6881,7 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (!IV || IV->getLoop() != L || !IV->isAffine())
return getCouldNotCompute();
bool NoWrap = !IsSubExpr &&
bool NoWrap = ControlsExit &&
IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
const SCEV *Stride = IV->getStepRecurrence(*this);
@ -6700,13 +6934,13 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
return ExitLimit(BECount, MaxBECount);
}
ScalarEvolution::ExitLimit
ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
const Loop *L, bool IsSigned,
bool IsSubExpr) {
bool ControlsExit) {
// We handle only IV > Invariant
if (!isLoopInvariant(RHS, L))
return getCouldNotCompute();
@ -6717,7 +6951,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
if (!IV || IV->getLoop() != L || !IV->isAffine())
return getCouldNotCompute();
bool NoWrap = !IsSubExpr &&
bool NoWrap = ControlsExit &&
IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
@ -6772,7 +7006,7 @@ ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
if (isa<SCEVCouldNotCompute>(MaxBECount))
MaxBECount = BECount;
return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
return ExitLimit(BECount, MaxBECount);
}
/// getNumIterationsInRange - Return the number of iterations of this loop that
@ -7000,268 +7234,6 @@ void SCEVAddRecExpr::collectParametricTerms(
});
}
static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getValue()->getValue();
APInt B = C2->getValue()->getValue();
uint32_t ABW = A.getBitWidth();
uint32_t BBW = B.getBitWidth();
if (ABW > BBW)
B = B.sext(ABW);
else if (ABW < BBW)
A = A.sext(BBW);
return APIntOps::srem(A, B);
}
static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
APInt A = C1->getValue()->getValue();
APInt B = C2->getValue()->getValue();
uint32_t ABW = A.getBitWidth();
uint32_t BBW = B.getBitWidth();
if (ABW > BBW)
B = B.sext(ABW);
else if (ABW < BBW)
A = A.sext(BBW);
return APIntOps::sdiv(A, B);
}
namespace {
struct FindSCEVSize {
int Size;
FindSCEVSize() : Size(0) {}
bool follow(const SCEV *S) {
++Size;
// Keep looking at all operands of S.
return true;
}
bool isDone() const {
return false;
}
};
}
// Returns the size of the SCEV S.
static inline int sizeOfSCEV(const SCEV *S) {
FindSCEVSize F;
SCEVTraversal<FindSCEVSize> ST(F);
ST.visitAll(S);
return F.Size;
}
namespace {
struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
public:
// Computes the Quotient and Remainder of the division of Numerator by
// Denominator.
static void divide(ScalarEvolution &SE, const SCEV *Numerator,
const SCEV *Denominator, const SCEV **Quotient,
const SCEV **Remainder) {
assert(Numerator && Denominator && "Uninitialized SCEV");
SCEVDivision D(SE, Numerator, Denominator);
// Check for the trivial case here to avoid having to check for it in the
// rest of the code.
if (Numerator == Denominator) {
*Quotient = D.One;
*Remainder = D.Zero;
return;
}
if (Numerator->isZero()) {
*Quotient = D.Zero;
*Remainder = D.Zero;
return;
}
// Split the Denominator when it is a product.
if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
const SCEV *Q, *R;
*Quotient = Numerator;
for (const SCEV *Op : T->operands()) {
divide(SE, *Quotient, Op, &Q, &R);
*Quotient = Q;
// Bail out when the Numerator is not divisible by one of the terms of
// the Denominator.
if (!R->isZero()) {
*Quotient = D.Zero;
*Remainder = Numerator;
return;
}
}
*Remainder = D.Zero;
return;
}
D.visit(Numerator);
*Quotient = D.Quotient;
*Remainder = D.Remainder;
}
SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
: SE(S), Denominator(Denominator) {
Zero = SE.getConstant(Denominator->getType(), 0);
One = SE.getConstant(Denominator->getType(), 1);
// By default, we don't know how to divide Expr by Denominator.
// Providing the default here simplifies the rest of the code.
Quotient = Zero;
Remainder = Numerator;
}
// Except in the trivial case described above, we do not know how to divide
// Expr by Denominator for the following functions with empty implementation.
void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
void visitUnknown(const SCEVUnknown *Numerator) {}
void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
void visitConstant(const SCEVConstant *Numerator) {
if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Quotient = SE.getConstant(sdiv(Numerator, D));
Remainder = SE.getConstant(srem(Numerator, D));
return;
}
}
void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
const SCEV *StartQ, *StartR, *StepQ, *StepR;
assert(Numerator->isAffine() && "Numerator should be affine");
divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
Numerator->getNoWrapFlags());
Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
Numerator->getNoWrapFlags());
}
void visitAddExpr(const SCEVAddExpr *Numerator) {
SmallVector<const SCEV *, 2> Qs, Rs;
Type *Ty = Denominator->getType();
for (const SCEV *Op : Numerator->operands()) {
const SCEV *Q, *R;
divide(SE, Op, Denominator, &Q, &R);
// Bail out if types do not match.
if (Ty != Q->getType() || Ty != R->getType()) {
Quotient = Zero;
Remainder = Numerator;
return;
}
Qs.push_back(Q);
Rs.push_back(R);
}
if (Qs.size() == 1) {
Quotient = Qs[0];
Remainder = Rs[0];
return;
}
Quotient = SE.getAddExpr(Qs);
Remainder = SE.getAddExpr(Rs);
}
void visitMulExpr(const SCEVMulExpr *Numerator) {
SmallVector<const SCEV *, 2> Qs;
Type *Ty = Denominator->getType();
bool FoundDenominatorTerm = false;
for (const SCEV *Op : Numerator->operands()) {
// Bail out if types do not match.
if (Ty != Op->getType()) {
Quotient = Zero;
Remainder = Numerator;
return;
}
if (FoundDenominatorTerm) {
Qs.push_back(Op);
continue;
}
// Check whether Denominator divides one of the product operands.
const SCEV *Q, *R;
divide(SE, Op, Denominator, &Q, &R);
if (!R->isZero()) {
Qs.push_back(Op);
continue;
}
// Bail out if types do not match.
if (Ty != Q->getType()) {
Quotient = Zero;
Remainder = Numerator;
return;
}
FoundDenominatorTerm = true;
Qs.push_back(Q);
}
if (FoundDenominatorTerm) {
Remainder = Zero;
if (Qs.size() == 1)
Quotient = Qs[0];
else
Quotient = SE.getMulExpr(Qs);
return;
}
if (!isa<SCEVUnknown>(Denominator)) {
Quotient = Zero;
Remainder = Numerator;
return;
}
// The Remainder is obtained by replacing Denominator by 0 in Numerator.
ValueToValueMap RewriteMap;
RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
cast<SCEVConstant>(Zero)->getValue();
Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
if (Remainder->isZero()) {
// The Quotient is obtained by replacing Denominator by 1 in Numerator.
RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
cast<SCEVConstant>(One)->getValue();
Quotient =
SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
return;
}
// Quotient is (Numerator - Remainder) divided by Denominator.
const SCEV *Q, *R;
const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
// This SCEV does not seem to simplify: fail the division here.
Quotient = Zero;
Remainder = Numerator;
return;
}
divide(SE, Diff, Denominator, &Q, &R);
assert(R == Zero &&
"(Numerator - Remainder) should evenly divide Denominator");
Quotient = Q;
}
private:
ScalarEvolution &SE;
const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
};
}
static bool findArrayDimensionsRec(ScalarEvolution &SE,
SmallVectorImpl<const SCEV *> &Terms,
SmallVectorImpl<const SCEV *> &Sizes) {

View File

@ -48,6 +48,6 @@ exit:
ret void
; CHECK-LABEL: @test3
; CHECK: Loop %loop: Unpredictable backedge-taken count.
; CHECK: Loop %loop: Unpredictable max backedge-taken count.
; CHECK: Loop %loop: backedge-taken count is ((-96 + (96 * %n)) /u 96)
; CHECK: Loop %loop: max backedge-taken count is ((-96 + (96 * %n)) /u 96)
}

View File

@ -66,16 +66,13 @@ exit2:
; SCEV properly unrolls multi-exit loops.
;
; SCEV cannot currently unroll this loop.
; It should ideally detect a trip count of 5.
; rdar:14038809 [SCEV]: Optimize trip count computation for multi-exit loops.
; CHECK-LABEL: @multiExit(
; CHECKFIXME: getelementptr i32* %base, i32 10
; CHECKFIXME-NEXT: load i32*
; CHECKFIXME: br i1 false, label %l2.10, label %exit1
; CHECKFIXME: l2.10:
; CHECKFIXME-NOT: br
; CHECKFIXME: ret i32
; CHECK: getelementptr i32* %base, i32 10
; CHECK-NEXT: load i32*
; CHECK: br i1 false, label %l2.10, label %exit1
; CHECK: l2.10:
; CHECK-NOT: br
; CHECK: ret i32
define i32 @multiExit(i32* %base) nounwind {
entry:
br label %l1