forked from OSchip/llvm-project
ARM64: always use i64 for the RHS of shift operations
Switching between i32 and i64 based on the LHS type is a good idea in theory, but pre-legalisation uses i64 regardless of our choice, leading to potential ISel errors. Should fix PR19294. llvm-svn: 205519
This commit is contained in:
parent
caccac10b7
commit
2ad88d3aab
|
@ -573,11 +573,6 @@ void ARM64TargetLowering::computeMaskedBitsForTargetNode(
|
|||
}
|
||||
|
||||
MVT ARM64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
|
||||
if (!LHSTy.isSimple())
|
||||
return MVT::i64;
|
||||
MVT SimpleVT = LHSTy.getSimpleVT();
|
||||
if (SimpleVT == MVT::i32)
|
||||
return MVT::i32;
|
||||
return MVT::i64;
|
||||
}
|
||||
|
||||
|
@ -1534,10 +1529,10 @@ getARM64XALUOOp(ARM64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
|
|||
// check we have to arithmetic shift right the 32nd bit of the result by
|
||||
// 31 bits. Then we compare the result to the upper 32 bits.
|
||||
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
|
||||
DAG.getConstant(32, MVT::i32));
|
||||
DAG.getConstant(32, MVT::i64));
|
||||
UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
|
||||
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
|
||||
DAG.getConstant(31, MVT::i32));
|
||||
DAG.getConstant(31, MVT::i64));
|
||||
// It is important that LowerBits is last, otherwise the arithmetic
|
||||
// shift will not be folded into the compare (SUBS).
|
||||
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
|
||||
|
@ -1550,7 +1545,7 @@ getARM64XALUOOp(ARM64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
|
|||
// pattern:
|
||||
// (i64 ARM64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
|
||||
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
|
||||
DAG.getConstant(32, MVT::i32));
|
||||
DAG.getConstant(32, MVT::i64));
|
||||
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
||||
Overflow =
|
||||
DAG.getNode(ARM64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
|
||||
|
@ -1564,7 +1559,7 @@ getARM64XALUOOp(ARM64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
|
|||
if (IsSigned) {
|
||||
SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
|
||||
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
|
||||
DAG.getConstant(63, MVT::i32));
|
||||
DAG.getConstant(63, MVT::i64));
|
||||
// It is important that LowerBits is last, otherwise the arithmetic
|
||||
// shift will not be folded into the compare (SUBS).
|
||||
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
||||
|
@ -6330,16 +6325,18 @@ static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
|
|||
if (VP1.isPowerOf2()) {
|
||||
// Multiplying by one less than a power of two, replace with a shift
|
||||
// and a subtract.
|
||||
SDValue ShiftedVal = DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
||||
DAG.getConstant(VP1.logBase2(), VT));
|
||||
SDValue ShiftedVal =
|
||||
DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
||||
DAG.getConstant(VP1.logBase2(), MVT::i64));
|
||||
return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
|
||||
}
|
||||
APInt VM1 = Value - 1;
|
||||
if (VM1.isPowerOf2()) {
|
||||
// Multiplying by one more than a power of two, replace with a shift
|
||||
// and an add.
|
||||
SDValue ShiftedVal = DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
||||
DAG.getConstant(VM1.logBase2(), VT));
|
||||
SDValue ShiftedVal =
|
||||
DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
||||
DAG.getConstant(VM1.logBase2(), MVT::i64));
|
||||
return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -440,57 +440,33 @@ def imm0_127 : Operand<i32>, ImmLeaf<i32, [{
|
|||
let ParserMatchClass = Imm0_127Operand;
|
||||
}
|
||||
|
||||
// NOTE: These imm0_N operands have to be of type i64 because i64 is the size
|
||||
// for all shift-amounts.
|
||||
|
||||
// imm0_63 predicate - True if the immediate is in the range [0,63]
|
||||
// NOTE: This has to be of type i64 because i64 is the shift-amount-size
|
||||
// for X registers.
|
||||
def imm0_63 : Operand<i64>, ImmLeaf<i64, [{
|
||||
return ((uint64_t)Imm) < 64;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_63Operand;
|
||||
}
|
||||
|
||||
// imm0_31x predicate - True if the immediate is in the range [0,31]
|
||||
// NOTE: This has to be of type i64 because i64 is the shift-amount-size
|
||||
// for X registers.
|
||||
def imm0_31x : Operand<i64>, ImmLeaf<i64, [{
|
||||
// imm0_31 predicate - True if the immediate is in the range [0,31]
|
||||
def imm0_31 : Operand<i64>, ImmLeaf<i64, [{
|
||||
return ((uint64_t)Imm) < 32;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_31Operand;
|
||||
}
|
||||
|
||||
// imm0_15x predicate - True if the immediate is in the range [0,15]
|
||||
def imm0_15x : Operand<i64>, ImmLeaf<i64, [{
|
||||
// imm0_15 predicate - True if the immediate is in the range [0,15]
|
||||
def imm0_15 : Operand<i64>, ImmLeaf<i64, [{
|
||||
return ((uint64_t)Imm) < 16;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_15Operand;
|
||||
}
|
||||
|
||||
// imm0_7x predicate - True if the immediate is in the range [0,7]
|
||||
def imm0_7x : Operand<i64>, ImmLeaf<i64, [{
|
||||
return ((uint64_t)Imm) < 8;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_7Operand;
|
||||
}
|
||||
|
||||
// imm0_31 predicate - True if the immediate is in the range [0,31]
|
||||
// NOTE: This has to be of type i32 because i32 is the shift-amount-size
|
||||
// for W registers.
|
||||
def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
|
||||
return ((uint32_t)Imm) < 32;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_31Operand;
|
||||
}
|
||||
|
||||
// imm0_15 predicate - True if the immediate is in the range [0,15]
|
||||
def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
|
||||
return ((uint32_t)Imm) < 16;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_15Operand;
|
||||
}
|
||||
|
||||
// imm0_7 predicate - True if the immediate is in the range [0,7]
|
||||
def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
|
||||
return ((uint32_t)Imm) < 8;
|
||||
def imm0_7 : Operand<i64>, ImmLeaf<i64, [{
|
||||
return ((uint64_t)Imm) < 8;
|
||||
}]> {
|
||||
let ParserMatchClass = Imm0_7Operand;
|
||||
}
|
||||
|
@ -1127,21 +1103,34 @@ multiclass Div<bit isSigned, string asm, SDPatternOperator OpNode> {
|
|||
}
|
||||
}
|
||||
|
||||
class BaseShift<bits<2> shift_type, RegisterClass regtype,
|
||||
string asm, SDNode OpNode>
|
||||
class BaseShift<bits<2> shift_type, RegisterClass regtype, string asm,
|
||||
SDPatternOperator OpNode = null_frag>
|
||||
: BaseTwoOperand<{1,0,?,?}, regtype, asm, OpNode>,
|
||||
Sched<[WriteIS]> {
|
||||
let Inst{11-10} = shift_type;
|
||||
}
|
||||
|
||||
multiclass Shift<bits<2> shift_type, string asm, SDNode OpNode> {
|
||||
def Wr : BaseShift<shift_type, GPR32, asm, OpNode> {
|
||||
def Wr : BaseShift<shift_type, GPR32, asm> {
|
||||
let Inst{31} = 0;
|
||||
}
|
||||
|
||||
def Xr : BaseShift<shift_type, GPR64, asm, OpNode> {
|
||||
let Inst{31} = 1;
|
||||
}
|
||||
|
||||
def : Pat<(i32 (OpNode GPR32:$Rn, i64:$Rm)),
|
||||
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn,
|
||||
(EXTRACT_SUBREG i64:$Rm, sub_32))>;
|
||||
|
||||
def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (zext GPR32:$Rm)))),
|
||||
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
|
||||
|
||||
def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (anyext GPR32:$Rm)))),
|
||||
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
|
||||
|
||||
def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (sext GPR32:$Rm)))),
|
||||
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
|
||||
}
|
||||
|
||||
class ShiftAlias<string asm, Instruction inst, RegisterClass regtype>
|
||||
|
@ -1572,7 +1561,7 @@ multiclass AddSubS<bit isSub, string mnemonic, SDNode OpNode> {
|
|||
// Extract
|
||||
//---
|
||||
def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
|
||||
SDTCisSameAs<0, 3>]>;
|
||||
SDTCisPtrTy<3>]>;
|
||||
def ARM64Extr : SDNode<"ARM64ISD::EXTR", SDTA64EXTR>;
|
||||
|
||||
class BaseExtractImm<RegisterClass regtype, Operand imm_type, string asm,
|
||||
|
|
|
@ -643,7 +643,7 @@ defm CLS : OneOperandData<0b101, "cls">;
|
|||
defm CLZ : OneOperandData<0b100, "clz", ctlz>;
|
||||
defm RBIT : OneOperandData<0b000, "rbit">;
|
||||
def REV16Wr : OneWRegData<0b001, "rev16",
|
||||
UnOpFrag<(rotr (bswap node:$LHS), (i32 16))>>;
|
||||
UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
|
||||
def REV16Xr : OneXRegData<0b001, "rev16",
|
||||
UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
|
||||
|
||||
|
@ -670,7 +670,7 @@ def : InstAlias<"ror $dst, $src, $shift",
|
|||
def : InstAlias<"ror $dst, $src, $shift",
|
||||
(EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
|
||||
|
||||
def : Pat<(rotr GPR32:$Rn, (i32 imm0_31:$imm)),
|
||||
def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
|
||||
(EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
|
||||
def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
|
||||
(EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
|
||||
|
@ -684,28 +684,28 @@ defm SBFM : BitfieldImm<0b00, "sbfm">;
|
|||
defm UBFM : BitfieldImm<0b10, "ubfm">;
|
||||
}
|
||||
|
||||
def i32shift_a : Operand<i32>, SDNodeXForm<imm, [{
|
||||
def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
|
||||
uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
|
||||
return CurDAG->getTargetConstant(enc, MVT::i32);
|
||||
return CurDAG->getTargetConstant(enc, MVT::i64);
|
||||
}]>;
|
||||
|
||||
def i32shift_b : Operand<i32>, SDNodeXForm<imm, [{
|
||||
def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
|
||||
uint64_t enc = 31 - N->getZExtValue();
|
||||
return CurDAG->getTargetConstant(enc, MVT::i32);
|
||||
return CurDAG->getTargetConstant(enc, MVT::i64);
|
||||
}]>;
|
||||
|
||||
// min(7, 31 - shift_amt)
|
||||
def i32shift_sext_i8 : Operand<i32>, SDNodeXForm<imm, [{
|
||||
def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
|
||||
uint64_t enc = 31 - N->getZExtValue();
|
||||
enc = enc > 7 ? 7 : enc;
|
||||
return CurDAG->getTargetConstant(enc, MVT::i32);
|
||||
return CurDAG->getTargetConstant(enc, MVT::i64);
|
||||
}]>;
|
||||
|
||||
// min(15, 31 - shift_amt)
|
||||
def i32shift_sext_i16 : Operand<i32>, SDNodeXForm<imm, [{
|
||||
def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
|
||||
uint64_t enc = 31 - N->getZExtValue();
|
||||
enc = enc > 15 ? 15 : enc;
|
||||
return CurDAG->getTargetConstant(enc, MVT::i32);
|
||||
return CurDAG->getTargetConstant(enc, MVT::i64);
|
||||
}]>;
|
||||
|
||||
def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
|
||||
|
@ -739,15 +739,15 @@ def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
|
|||
return CurDAG->getTargetConstant(enc, MVT::i64);
|
||||
}]>;
|
||||
|
||||
def : Pat<(shl GPR32:$Rn, (i32 imm0_31:$imm)),
|
||||
(UBFMWri GPR32:$Rn, (i32 (i32shift_a imm0_31:$imm)),
|
||||
(i32 (i32shift_b imm0_31:$imm)))>;
|
||||
def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
|
||||
(UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
|
||||
(i64 (i32shift_b imm0_31:$imm)))>;
|
||||
def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
|
||||
(UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
|
||||
(i64 (i64shift_b imm0_63:$imm)))>;
|
||||
|
||||
let AddedComplexity = 10 in {
|
||||
def : Pat<(sra GPR32:$Rn, (i32 imm0_31:$imm)),
|
||||
def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
|
||||
(SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
|
||||
def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
|
||||
(SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
|
||||
|
@ -763,7 +763,7 @@ def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
|
|||
def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
|
||||
def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
|
||||
|
||||
def : Pat<(srl GPR32:$Rn, (i32 imm0_31:$imm)),
|
||||
def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
|
||||
(UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
|
||||
def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
|
||||
(UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
|
||||
|
@ -4247,16 +4247,16 @@ def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
|
|||
def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>;
|
||||
def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>;
|
||||
|
||||
def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i32 imm0_31:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i32 (i32shift_a imm0_31:$imm)),
|
||||
(i32 (i32shift_sext_i8 imm0_31:$imm)))>;
|
||||
def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
|
||||
(i64 (i32shift_sext_i8 imm0_31:$imm)))>;
|
||||
def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
|
||||
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
|
||||
(i64 (i64shift_sext_i8 imm0_63:$imm)))>;
|
||||
|
||||
def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i32 imm0_31:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i32 (i32shift_a imm0_31:$imm)),
|
||||
(i32 (i32shift_sext_i16 imm0_31:$imm)))>;
|
||||
def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
|
||||
(i64 (i32shift_sext_i16 imm0_31:$imm)))>;
|
||||
def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
|
||||
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
|
||||
(i64 (i64shift_sext_i16 imm0_63:$imm)))>;
|
||||
|
@ -4273,19 +4273,19 @@ let AddedComplexity = 20 in {
|
|||
// We support all sext + sra combinations which preserve at least one bit of the
|
||||
// original value which is to be sign extended. E.g. we support shifts up to
|
||||
// bitwidth-1 bits.
|
||||
def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i32 imm0_7:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i32 imm0_7:$imm), 7)>;
|
||||
def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7x:$imm)),
|
||||
(SBFMXri GPR64:$Rn, (i64 imm0_7x:$imm), 7)>;
|
||||
def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
|
||||
def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
|
||||
(SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
|
||||
|
||||
def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i32 imm0_15:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i32 imm0_15:$imm), 15)>;
|
||||
def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15x:$imm)),
|
||||
(SBFMXri GPR64:$Rn, (i64 imm0_15x:$imm), 15)>;
|
||||
def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
|
||||
(SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
|
||||
def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
|
||||
(SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
|
||||
|
||||
def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31x:$imm)),
|
||||
def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
|
||||
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
|
||||
(i64 imm0_31x:$imm), 31)>;
|
||||
(i64 imm0_31:$imm), 31)>;
|
||||
} // AddedComplexity = 20
|
||||
|
||||
// To truncate, we can simply extract from a subregister.
|
||||
|
|
Loading…
Reference in New Issue