[Sema] Fix address-of + enable_if overloading logic

Previously, our logic when taking the address of an overloaded function
would not consider enable_if attributes, so long as all of the enable_if
conditions on a given candidate were true. So, two functions with
identical signatures (one with enable_if attributes, the other without),
would be considered equally good overloads. If we were calling the
function instead of taking its address, then the function with enable_if
attributes would be preferred.

This patch makes us prefer the candidate with enable_if regardless of if
we're calling or taking the address of an overloaded function.

Differential Revision: http://reviews.llvm.org/D13795

llvm-svn: 250486
This commit is contained in:
George Burgess IV 2015-10-16 01:17:38 +00:00
parent 47d118e9f2
commit 2a6150d932
5 changed files with 146 additions and 68 deletions

View File

@ -5855,23 +5855,31 @@ ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
return nullptr;
}
static bool IsNotEnableIfAttr(Attr *A) { return !isa<EnableIfAttr>(A); }
// specific_attr_iterator iterates over enable_if attributes in reverse, and
// enable_if is order-sensitive. As a result, we need to reverse things
// sometimes. Size of 4 elements is arbitrary.
static SmallVector<EnableIfAttr *, 4>
getOrderedEnableIfAttrs(const FunctionDecl *Function) {
SmallVector<EnableIfAttr *, 4> Result;
if (!Function->hasAttrs())
return Result;
const auto &FuncAttrs = Function->getAttrs();
for (Attr *Attr : FuncAttrs)
if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
Result.push_back(EnableIf);
std::reverse(Result.begin(), Result.end());
return Result;
}
EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
bool MissingImplicitThis) {
// FIXME: specific_attr_iterator<EnableIfAttr> iterates in reverse order, but
// we need to find the first failing one.
if (!Function->hasAttrs())
auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
if (EnableIfAttrs.empty())
return nullptr;
AttrVec Attrs = Function->getAttrs();
AttrVec::iterator E = std::remove_if(Attrs.begin(), Attrs.end(),
IsNotEnableIfAttr);
if (Attrs.begin() == E)
return nullptr;
std::reverse(Attrs.begin(), E);
SFINAETrap Trap(*this);
SmallVector<Expr *, 16> ConvertedArgs;
bool InitializationFailed = false;
bool ContainsValueDependentExpr = false;
@ -5908,7 +5916,7 @@ EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
}
if (InitializationFailed || Trap.hasErrorOccurred())
return cast<EnableIfAttr>(Attrs[0]);
return EnableIfAttrs[0];
// Push default arguments if needed.
if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
@ -5929,12 +5937,11 @@ EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
}
if (InitializationFailed || Trap.hasErrorOccurred())
return cast<EnableIfAttr>(Attrs[0]);
return EnableIfAttrs[0];
}
for (AttrVec::iterator I = Attrs.begin(); I != E; ++I) {
for (auto *EIA : EnableIfAttrs) {
APValue Result;
EnableIfAttr *EIA = cast<EnableIfAttr>(*I);
if (EIA->getCond()->isValueDependent()) {
// Don't even try now, we'll examine it after instantiation.
continue;
@ -8397,6 +8404,44 @@ Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
}
}
// Determines whether Cand1 is "better" in terms of its enable_if attrs than
// Cand2 for overloading. This function assumes that all of the enable_if attrs
// on Cand1 and Cand2 have conditions that evaluate to true.
//
// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
// Cand1's first N enable_if attributes have precisely the same conditions as
// Cand2's first N enable_if attributes (where N = the number of enable_if
// attributes on Cand2), and Cand1 has more than N enable_if attributes.
static bool hasBetterEnableIfAttrs(Sema &S, const FunctionDecl *Cand1,
const FunctionDecl *Cand2) {
// FIXME: The next several lines are just
// specific_attr_iterator<EnableIfAttr> but going in declaration order,
// instead of reverse order which is how they're stored in the AST.
auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
// Candidate 1 is better if it has strictly more attributes and
// the common sequence is identical.
if (Cand1Attrs.size() <= Cand2Attrs.size())
return false;
auto Cand1I = Cand1Attrs.begin();
llvm::FoldingSetNodeID Cand1ID, Cand2ID;
for (auto &Cand2A : Cand2Attrs) {
Cand1ID.clear();
Cand2ID.clear();
auto &Cand1A = *Cand1I++;
Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
if (Cand1ID != Cand2ID)
return false;
}
return true;
}
/// isBetterOverloadCandidate - Determines whether the first overload
/// candidate is a better candidate than the second (C++ 13.3.3p1).
bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
@ -8507,47 +8552,8 @@ bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
// Check for enable_if value-based overload resolution.
if (Cand1.Function && Cand2.Function &&
(Cand1.Function->hasAttr<EnableIfAttr>() ||
Cand2.Function->hasAttr<EnableIfAttr>())) {
// FIXME: The next several lines are just
// specific_attr_iterator<EnableIfAttr> but going in declaration order,
// instead of reverse order which is how they're stored in the AST.
AttrVec Cand1Attrs;
if (Cand1.Function->hasAttrs()) {
Cand1Attrs = Cand1.Function->getAttrs();
Cand1Attrs.erase(std::remove_if(Cand1Attrs.begin(), Cand1Attrs.end(),
IsNotEnableIfAttr),
Cand1Attrs.end());
std::reverse(Cand1Attrs.begin(), Cand1Attrs.end());
}
AttrVec Cand2Attrs;
if (Cand2.Function->hasAttrs()) {
Cand2Attrs = Cand2.Function->getAttrs();
Cand2Attrs.erase(std::remove_if(Cand2Attrs.begin(), Cand2Attrs.end(),
IsNotEnableIfAttr),
Cand2Attrs.end());
std::reverse(Cand2Attrs.begin(), Cand2Attrs.end());
}
// Candidate 1 is better if it has strictly more attributes and
// the common sequence is identical.
if (Cand1Attrs.size() <= Cand2Attrs.size())
return false;
auto Cand1I = Cand1Attrs.begin();
for (auto &Cand2A : Cand2Attrs) {
auto &Cand1A = *Cand1I++;
llvm::FoldingSetNodeID Cand1ID, Cand2ID;
cast<EnableIfAttr>(Cand1A)->getCond()->Profile(Cand1ID,
S.getASTContext(), true);
cast<EnableIfAttr>(Cand2A)->getCond()->Profile(Cand2ID,
S.getASTContext(), true);
if (Cand1ID != Cand2ID)
return false;
}
return true;
}
Cand2.Function->hasAttr<EnableIfAttr>()))
return hasBetterEnableIfAttrs(S, Cand1.Function, Cand2.Function);
if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
Cand1.Function && Cand2.Function) {
@ -9986,7 +9992,7 @@ public:
if (FindAllFunctionsThatMatchTargetTypeExactly()) {
// C++ [over.over]p4:
// If more than one function is selected, [...]
if (Matches.size() > 1) {
if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
if (FoundNonTemplateFunction)
EliminateAllTemplateMatches();
else
@ -10002,6 +10008,36 @@ public:
bool hasComplained() const { return HasComplained; }
private:
// Is A considered a better overload candidate for the desired type than B?
bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
return hasBetterEnableIfAttrs(S, A, B);
}
// Returns true if we've eliminated any (read: all but one) candidates, false
// otherwise.
bool eliminiateSuboptimalOverloadCandidates() {
// Same algorithm as overload resolution -- one pass to pick the "best",
// another pass to be sure that nothing is better than the best.
auto Best = Matches.begin();
for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
if (isBetterCandidate(I->second, Best->second))
Best = I;
const FunctionDecl *BestFn = Best->second;
auto IsBestOrInferiorToBest = [this, BestFn](
const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
};
// Note: We explicitly leave Matches unmodified if there isn't a clear best
// option, so we can potentially give the user a better error
if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
return false;
Matches[0] = *Best;
Matches.resize(1);
return true;
}
bool isTargetTypeAFunction() const {
return TargetFunctionType->isFunctionType();
}

View File

@ -49,3 +49,34 @@ void test2() {
// CHECK: store i8* bitcast (void (i32)* @_Z3barUa9enable_ifIXLi1EEEi to i8*)
vp1 = (void*)bar;
}
void baz(int m) __attribute__((overloadable, enable_if(1, "")));
void baz(int m) __attribute__((overloadable));
// CHECK-LABEL: define void @test3
void test3() {
// CHECK: store void (i32)* @_Z3bazUa9enable_ifIXLi1EEEi
void (*p)(int) = baz;
// CHECK: store void (i32)* @_Z3bazUa9enable_ifIXLi1EEEi
void (*p2)(int) = &baz;
// CHECK: store void (i32)* @_Z3bazUa9enable_ifIXLi1EEEi
p = baz;
// CHECK: store void (i32)* @_Z3bazUa9enable_ifIXLi1EEEi
p = &baz;
}
const int TRUEFACTS = 1;
void qux(int m) __attribute__((overloadable, enable_if(1, ""),
enable_if(TRUEFACTS, "")));
void qux(int m) __attribute__((overloadable, enable_if(1, "")));
// CHECK-LABEL: define void @test4
void test4() {
// CHECK: store void (i32)* @_Z3quxUa9enable_ifIXLi1EEXL_Z9TRUEFACTSEEEi
void (*p)(int) = qux;
// CHECK: store void (i32)* @_Z3quxUa9enable_ifIXLi1EEXL_Z9TRUEFACTSEEEi
void (*p2)(int) = &qux;
// CHECK: store void (i32)* @_Z3quxUa9enable_ifIXLi1EEXL_Z9TRUEFACTSEEEi
p = qux;
// CHECK: store void (i32)* @_Z3quxUa9enable_ifIXLi1EEXL_Z9TRUEFACTSEEEi
p = &qux;
}

View File

@ -1,4 +1,13 @@
// RUN: %clang_cc1 -emit-llvm %s -o - -triple=x86_64-pc-linux-gnu| FileCheck %s
// Test address-of overloading logic
int test5(int);
template <typename T>
T test5(T) __attribute__((enable_if(1, "better than non-template")));
// CHECK: @_Z5test5IiEUa9enable_ifIXLi1EEET_S0_
int (*Ptr)(int) = &test5;
// Test itanium mangling for attribute enable_if
// CHECK: _Z5test1Ua9enable_ifIXeqfL0p_Li1EEEi

View File

@ -5,6 +5,8 @@
typedef int mode_t;
typedef unsigned long size_t;
const int TRUE = 1;
int open(const char *pathname, int flags) __attribute__((enable_if(!(flags & O_CREAT), "must specify mode when using O_CREAT"))) __attribute__((overloadable)); // expected-note{{candidate disabled: must specify mode when using O_CREAT}}
int open(const char *pathname, int flags, mode_t mode) __attribute__((overloadable)); // expected-note{{candidate function not viable: requires 3 arguments, but 2 were provided}}
@ -118,20 +120,20 @@ void test_return_cst() { return_cst(); }
void f2(void) __attribute__((overloadable)) __attribute__((enable_if(1, "always chosen")));
void f2(void) __attribute__((overloadable)) __attribute__((enable_if(0, "never chosen")));
void f2(void) __attribute__((overloadable));
void f2(void) __attribute__((overloadable)) __attribute__((enable_if(TRUE, "always chosen #2")));
void test6() {
void (*p1)(void) = &f2; // expected-error{{initializing 'void (*)(void)' with an expression of incompatible type '<overloaded function type>'}} expected-note@119{{candidate function}} expected-note@120{{candidate function made ineligible by enable_if}} expected-note@121{{candidate function}}
void (*p2)(void) = f2; // expected-error{{initializing 'void (*)(void)' with an expression of incompatible type '<overloaded function type>'}} expected-note@119{{candidate function}} expected-note@120{{candidate function made ineligible by enable_if}} expected-note@121{{candidate function}}
void *p3 = (void*)&f2; // expected-error{{address of overloaded function 'f2' is ambiguous}} expected-note@119{{candidate function}} expected-note@120{{candidate function made ineligible by enable_if}} expected-note@121{{candidate function}}
void *p4 = (void*)f2; // expected-error{{address of overloaded function 'f2' is ambiguous}} expected-note@119{{candidate function}} expected-note@120{{candidate function made ineligible by enable_if}} expected-note@121{{candidate function}}
void (*p1)(void) = &f2; // expected-error{{initializing 'void (*)(void)' with an expression of incompatible type '<overloaded function type>'}} expected-note@121{{candidate function}} expected-note@122{{candidate function made ineligible by enable_if}} expected-note@123{{candidate function}}
void (*p2)(void) = f2; // expected-error{{initializing 'void (*)(void)' with an expression of incompatible type '<overloaded function type>'}} expected-note@121{{candidate function}} expected-note@122{{candidate function made ineligible by enable_if}} expected-note@123{{candidate function}}
void *p3 = (void*)&f2; // expected-error{{address of overloaded function 'f2' is ambiguous}} expected-note@121{{candidate function}} expected-note@122{{candidate function made ineligible by enable_if}} expected-note@123{{candidate function}}
void *p4 = (void*)f2; // expected-error{{address of overloaded function 'f2' is ambiguous}} expected-note@121{{candidate function}} expected-note@122{{candidate function made ineligible by enable_if}} expected-note@123{{candidate function}}
}
void f3(int m) __attribute__((overloadable)) __attribute__((enable_if(m >= 0, "positive")));
void f3(int m) __attribute__((overloadable)) __attribute__((enable_if(m < 0, "negative")));
void test7() {
void (*p1)(int) = &f3; // expected-error{{initializing 'void (*)(int)' with an expression of incompatible type '<overloaded function type>'}} expected-note@129{{candidate function made ineligible by enable_if}} expected-note@130{{candidate function made ineligible by enable_if}}
void (*p2)(int) = f3; // expected-error{{initializing 'void (*)(int)' with an expression of incompatible type '<overloaded function type>'}} expected-note@129{{candidate function made ineligible by enable_if}} expected-note@130{{candidate function made ineligible by enable_if}}
void *p3 = (void*)&f3; // expected-error{{address of overloaded function 'f3' does not match required type 'void'}} expected-note@129{{candidate function made ineligible by enable_if}} expected-note@130{{candidate function made ineligible by enable_if}}
void *p4 = (void*)f3; // expected-error{{address of overloaded function 'f3' does not match required type 'void'}} expected-note@129{{candidate function made ineligible by enable_if}} expected-note@130{{candidate function made ineligible by enable_if}}
void (*p1)(int) = &f3; // expected-error{{initializing 'void (*)(int)' with an expression of incompatible type '<overloaded function type>'}} expected-note@131{{candidate function made ineligible by enable_if}} expected-note@132{{candidate function made ineligible by enable_if}}
void (*p2)(int) = f3; // expected-error{{initializing 'void (*)(int)' with an expression of incompatible type '<overloaded function type>'}} expected-note@131{{candidate function made ineligible by enable_if}} expected-note@132{{candidate function made ineligible by enable_if}}
void *p3 = (void*)&f3; // expected-error{{address of overloaded function 'f3' does not match required type 'void'}} expected-note@131{{candidate function made ineligible by enable_if}} expected-note@132{{candidate function made ineligible by enable_if}}
void *p4 = (void*)f3; // expected-error{{address of overloaded function 'f3' does not match required type 'void'}} expected-note@131{{candidate function made ineligible by enable_if}} expected-note@132{{candidate function made ineligible by enable_if}}
}
#endif

View File

@ -189,7 +189,7 @@ namespace FnPtrs {
}
int ovlConflict(int m) __attribute__((enable_if(true, "")));
int ovlConflict(int m);
int ovlConflict(int m) __attribute__((enable_if(1, "")));
void test3() {
int (*p)(int) = ovlConflict; // expected-error{{address of overloaded function 'ovlConflict' is ambiguous}} expected-note@191{{candidate function}} expected-note@192{{candidate function}}
int (*p2)(int) = &ovlConflict; // expected-error{{address of overloaded function 'ovlConflict' is ambiguous}} expected-note@191{{candidate function}} expected-note@192{{candidate function}}
@ -225,7 +225,7 @@ namespace FnPtrs {
template <typename T>
T templatedConflict(T m) __attribute__((enable_if(true, ""))) { return T(); }
template <typename T>
T templatedConflict(T m) { return T(); }
T templatedConflict(T m) __attribute__((enable_if(1, ""))) { return T(); }
void test6() {
int (*p)(int) = templatedConflict<int>; // expected-error{{address of overloaded function 'templatedConflict' is ambiguous}} expected-note@224{{candidate function made ineligible by enable_if}} expected-note@226{{candidate function}} expected-note@228{{candidate function}}
int (*p0)(int) = &templatedConflict<int>; // expected-error{{address of overloaded function 'templatedConflict' is ambiguous}} expected-note@224{{candidate function made ineligible by enable_if}} expected-note@226{{candidate function}} expected-note@228{{candidate function}}