[analyzer] Generalize bitwise AND rules for ranges

Summary:
Previously the current solver started reasoning about bitwise AND
expressions only when one of the operands is a constant.  However,
very similar logic could be applied to ranges.  This commit addresses
this shortcoming.  Additionally, it refines how we deal with negative
operands.

rdar://problem/54359410

Differential Revision: https://reviews.llvm.org/D79434
This commit is contained in:
Valeriy Savchenko 2020-05-05 19:42:33 +03:00
parent 47c4b8bd68
commit 2a09daff0f
4 changed files with 176 additions and 85 deletions

View File

@ -430,9 +430,9 @@ private:
RangeSet RHS, QualType T) {
switch (Op) {
case BO_Or:
return VisitOrOperator(LHS, RHS, T);
return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
case BO_And:
return VisitAndOperator(LHS, RHS, T);
return VisitBinaryOperator<BO_And>(LHS, RHS, T);
default:
return infer(T);
}
@ -464,19 +464,19 @@ private:
ValueFactory.Convert(To, Origin.To()));
}
RangeSet VisitOrOperator(RangeSet LHS, RangeSet RHS, QualType T) {
template <BinaryOperator::Opcode Op>
RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
// We should propagate information about unfeasbility of one of the
// operands to the resulting range.
if (LHS.isEmpty() || RHS.isEmpty()) {
return RangeFactory.getEmptySet();
}
APSIntType ResultType = ValueFactory.getAPSIntType(T);
RangeSet DefaultRange = infer(T);
Range CoarseLHS = fillGaps(LHS);
Range CoarseRHS = fillGaps(RHS);
APSIntType ResultType = ValueFactory.getAPSIntType(T);
// We need to convert ranges to the resulting type, so we can compare values
// and combine them in a meaningful (in terms of the given operation) way.
auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
@ -485,74 +485,14 @@ private:
// It is hard to reason about ranges when conversion changes
// borders of the ranges.
if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
return DefaultRange;
return infer(T);
}
llvm::APSInt Zero = ResultType.getZeroValue();
bool IsLHSPositiveOrZero = ConvertedCoarseLHS->From() >= Zero;
bool IsRHSPositiveOrZero = ConvertedCoarseRHS->From() >= Zero;
bool IsLHSNegative = ConvertedCoarseLHS->To() < Zero;
bool IsRHSNegative = ConvertedCoarseRHS->To() < Zero;
// Check if both ranges have the same sign.
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
(IsLHSNegative && IsRHSNegative)) {
// The result is definitely greater or equal than any of the operands.
const llvm::APSInt &Min =
std::max(ConvertedCoarseLHS->From(), ConvertedCoarseRHS->From());
// We estimate maximal value for positives as the maximal value for the
// given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
//
// TODO: We basically, limit the resulting range from below (in absolute
// numbers), but don't do anything with the upper bound.
// For positive operands, it can be done as follows: for the upper
// bound of LHS and RHS we calculate the most significant bit set.
// Let's call it the N-th bit. Then we can estimate the maximal
// number to be 2^(N+1)-1, i.e. the number with all the bits up to
// the N-th bit set.
const llvm::APSInt &Max = IsLHSNegative
? ValueFactory.getValue(--Zero)
: ValueFactory.getMaxValue(ResultType);
return {RangeFactory, ValueFactory.getValue(Min), Max};
}
// Otherwise, let's check if at least one of the operands is negative.
if (IsLHSNegative || IsRHSNegative) {
// This means that the result is definitely negative as well.
return {RangeFactory, ValueFactory.getMinValue(ResultType),
ValueFactory.getValue(--Zero)};
}
// It is pretty hard to reason about operands with different signs
// (and especially with possibly different signs). We simply check if it
// can be zero. In order to conclude that the result could not be zero,
// at least one of the operands should be definitely not zero itself.
if (!ConvertedCoarseLHS->Includes(Zero) ||
!ConvertedCoarseRHS->Includes(Zero)) {
return assumeNonZero(DefaultRange, T);
}
// Nothing much else to do here.
return DefaultRange;
return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
}
RangeSet VisitAndOperator(RangeSet LHS, RangeSet RHS, QualType T) {
// TODO: generalize for the ranged RHS.
if (const llvm::APSInt *RHSConstant = RHS.getConcreteValue()) {
const llvm::APSInt &Zero = ValueFactory.getAPSIntType(T).getZeroValue();
// For unsigned types, or positive RHS,
// bitwise-and output is always smaller-or-equal than RHS (assuming two's
// complement representation of signed types).
if (T->isUnsignedIntegerType() || *RHSConstant >= Zero) {
return LHS.Intersect(ValueFactory, RangeFactory,
ValueFactory.getMinValue(T), *RHSConstant);
}
}
template <BinaryOperator::Opcode Op>
RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
return infer(T);
}
@ -592,6 +532,109 @@ private:
ProgramStateRef State;
};
template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
QualType T) {
APSIntType ResultType = ValueFactory.getAPSIntType(T);
llvm::APSInt Zero = ResultType.getZeroValue();
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
bool IsLHSNegative = LHS.To() < Zero;
bool IsRHSNegative = RHS.To() < Zero;
// Check if both ranges have the same sign.
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
(IsLHSNegative && IsRHSNegative)) {
// The result is definitely greater or equal than any of the operands.
const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
// We estimate maximal value for positives as the maximal value for the
// given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
//
// TODO: We basically, limit the resulting range from below, but don't do
// anything with the upper bound.
//
// For positive operands, it can be done as follows: for the upper
// bound of LHS and RHS we calculate the most significant bit set.
// Let's call it the N-th bit. Then we can estimate the maximal
// number to be 2^(N+1)-1, i.e. the number with all the bits up to
// the N-th bit set.
const llvm::APSInt &Max = IsLHSNegative
? ValueFactory.getValue(--Zero)
: ValueFactory.getMaxValue(ResultType);
return {RangeFactory, ValueFactory.getValue(Min), Max};
}
// Otherwise, let's check if at least one of the operands is negative.
if (IsLHSNegative || IsRHSNegative) {
// This means that the result is definitely negative as well.
return {RangeFactory, ValueFactory.getMinValue(ResultType),
ValueFactory.getValue(--Zero)};
}
RangeSet DefaultRange = infer(T);
// It is pretty hard to reason about operands with different signs
// (and especially with possibly different signs). We simply check if it
// can be zero. In order to conclude that the result could not be zero,
// at least one of the operands should be definitely not zero itself.
if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
return assumeNonZero(DefaultRange, T);
}
// Nothing much else to do here.
return DefaultRange;
}
template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
Range RHS,
QualType T) {
APSIntType ResultType = ValueFactory.getAPSIntType(T);
llvm::APSInt Zero = ResultType.getZeroValue();
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
bool IsLHSNegative = LHS.To() < Zero;
bool IsRHSNegative = RHS.To() < Zero;
// Check if both ranges have the same sign.
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
(IsLHSNegative && IsRHSNegative)) {
// The result is definitely less or equal than any of the operands.
const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
// We conservatively estimate lower bound to be the smallest positive
// or negative value corresponding to the sign of the operands.
const llvm::APSInt &Min = IsLHSNegative
? ValueFactory.getMinValue(ResultType)
: ValueFactory.getValue(Zero);
return {RangeFactory, Min, Max};
}
// Otherwise, let's check if at least one of the operands is positive.
if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
// This makes result definitely positive.
//
// We can also reason about a maximal value by finding the maximal
// value of the positive operand.
const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
// The minimal value on the other hand is much harder to reason about.
// The only thing we know for sure is that the result is positive.
return {RangeFactory, ValueFactory.getValue(Zero),
ValueFactory.getValue(Max)};
}
// Nothing much else to do here.
return infer(T);
}
class RangeConstraintManager : public RangedConstraintManager {
public:
RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)

View File

@ -78,19 +78,20 @@ void testMixedTypeComparisons (char a, unsigned long b) {
}
void testBitwiseRules(unsigned int a, int b, int c) {
clang_analyzer_eval((a | 1) >= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 1) >= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a | -1) >= -1); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 2) >= 2); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 5) >= 5); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 2) >= 2); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 5) >= 5); // expected-warning{{TRUE}}
clang_analyzer_eval((a | 10) >= 10); // expected-warning{{TRUE}}
// Argument order should not influence this
clang_analyzer_eval((1 | a) >= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 1) <= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 2) <= 2); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 5) <= 5); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 10) <= 10); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 1) <= 1); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 1) >= 0); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 2) <= 2); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 5) <= 5); // expected-warning{{TRUE}}
clang_analyzer_eval((a & 10) <= 10); // expected-warning{{TRUE}}
clang_analyzer_eval((a & -10) <= 10); // expected-warning{{UNKNOWN}}
// Again, check for different argument order.
@ -104,22 +105,37 @@ void testBitwiseRules(unsigned int a, int b, int c) {
clang_analyzer_eval((b | 1) > 0); // expected-warning{{UNKNOWN}}
// Even for signed values, bitwise OR with a non-zero is always non-zero.
clang_analyzer_eval((b | 1) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | 1) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | -2) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | 10) == 0); // expected-warning{{FALSE}}
clang_analyzer_eval((b | 0) == 0); // expected-warning{{UNKNOWN}}
clang_analyzer_eval((b | 0) == 0); // expected-warning{{UNKNOWN}}
clang_analyzer_eval((b | -2) >= 0); // expected-warning{{FALSE}}
// Check that we can operate with negative ranges
if (b < 0) {
clang_analyzer_eval((b | -1) == -1); // expected-warning{{TRUE}}
clang_analyzer_eval((b | -10) >= -10); // expected-warning{{TRUE}}
clang_analyzer_eval((b & 0) == 0); // expected-warning{{TRUE}}
clang_analyzer_eval((b & -10) <= -10); // expected-warning{{TRUE}}
clang_analyzer_eval((b & 5) >= 0); // expected-warning{{TRUE}}
int e = (b | -5);
clang_analyzer_eval(e >= -5 && e <= -1); // expected-warning{{TRUE}}
if (b < -20) {
clang_analyzer_eval((b | e) >= -5); // expected-warning{{TRUE}}
clang_analyzer_eval((b | e) >= -5); // expected-warning{{TRUE}}
clang_analyzer_eval((b & -10) < -20); // expected-warning{{TRUE}}
clang_analyzer_eval((b & e) < -20); // expected-warning{{TRUE}}
clang_analyzer_eval((b & -30) <= -30); // expected-warning{{TRUE}}
if (c >= -30 && c <= -10) {
clang_analyzer_eval((b & c) <= -20); // expected-warning{{TRUE}}
}
}
if (a <= 40) {
int g = (int)a & b;
clang_analyzer_eval(g <= 40 && g >= 0); // expected-warning{{TRUE}}
}
// Check that we can reason about the result even if know nothing
@ -135,6 +151,11 @@ void testBitwiseRules(unsigned int a, int b, int c) {
// the types are not the same, but we still can convert operand
// ranges.
clang_analyzer_eval((a | b) >= 10); // expected-warning{{TRUE}}
clang_analyzer_eval((a & b) <= 30); // expected-warning{{TRUE}}
if (b <= 20) {
clang_analyzer_eval((a & b) <= 20); // expected-warning{{TRUE}}
}
}
// Check that dynamically computed constants also work.
@ -149,11 +170,7 @@ void testBitwiseRules(unsigned int a, int b, int c) {
clang_analyzer_eval((a | 20) >= 20); // expected-warning{{TRUE}}
}
// TODO: We misuse intersection of ranges for bitwise AND and OR operators.
// Resulting ranges for the following cases are infeasible.
// This is what causes paradoxical results below.
if (a > 10) {
clang_analyzer_eval((a & 1) <= 1); // expected-warning{{FALSE}}
clang_analyzer_eval((a & 1) > 1); // expected-warning{{FALSE}}
clang_analyzer_eval((a & 1) <= 1); // expected-warning{{TRUE}}
}
}

View File

@ -218,3 +218,14 @@ void testConstant() {
break;
}
}
void testExhaustiveSwitch(unsigned int a) {
switch (a & 5) {
case 0 ... 5:
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
break;
default:
clang_analyzer_warnIfReached(); // no-warning
break;
}
}

View File

@ -0,0 +1,20 @@
// RUN: %clang_analyze_cc1 -analyzer-checker=core -verify %s
// rdar://problem/54359410
// expected-no-diagnostics
int rand();
void test() {
int offset = 0;
int value;
int test = rand();
switch (test & 0x1) {
case 0:
case 1:
value = 0;
break;
}
offset += value; // no-warning
}