forked from OSchip/llvm-project
[libcxxabi] Re-organized inheritance structure to remove CRTP in cxa_guard
Currently, the `InitByte...` classes inherit from `GuardObject` so they can access the `base_address`, `init_byte_address` and `thread_id_address`. Then, since `GuardObject` needs to call `acquire`/`release`/`abort_init_byte`, it uses the curiously recurring template pattern (CRTP). This is rather messy. Instead, we'll have `GuardObject` contain an instance of `InitByte`, and pass it the addresses it needs in the constructor. `GuardObject` doesn't need the addresses anyways, so it makes more sense for `InitByte` to keep them instead of `GuardObject`. Then, `GuardObject` can call `acquire`/`release`/`abort` as one of `InitByte`'s member functions. Organizing things this way not only gets rid of the use of the CRTP, but also improves separation of concerns a bit since the `InitByte` classes are no longer indirectly responsible for things because of their inheritance from `GuardObject`. This means we no longer have strange things like calling `InitByteFutex.cxa_guard_acquire`, instead we call `GuardObject<InitByteFutex>.cxa_guard_acquire`. This is the 4th of 5 changes to overhaul cxa_guard. See D108343 for what the final result will be. Depends on D115367 Reviewed By: ldionne, #libc_abi Differential Revision: https://reviews.llvm.org/D115368
This commit is contained in:
parent
847ea76219
commit
29be7c9c4f
|
@ -23,9 +23,15 @@
|
|||
* the thread currently performing initialization is stored in the second word.
|
||||
*
|
||||
* Guard Object Layout:
|
||||
* -------------------------------------------------------------------------
|
||||
* |a: guard byte | a+1: init byte | a+2 : unused ... | a+4: thread-id ... |
|
||||
* -------------------------------------------------------------------------
|
||||
* ---------------------------------------------------------------------------
|
||||
* | a+0: guard byte | a+1: init byte | a+2: unused ... | a+4: thread-id ... |
|
||||
* ---------------------------------------------------------------------------
|
||||
*
|
||||
* Note that we don't do what the ABI docs suggest (put a mutex in the guard
|
||||
* object which we acquire in cxa_guard_acquire and release in
|
||||
* cxa_guard_release). Instead we use the init byte to imitate that behaviour,
|
||||
* but without actually holding anything mutex related between aquire and
|
||||
* release/abort.
|
||||
*
|
||||
* Access Protocol:
|
||||
* For each implementation the guard byte is checked and set before accessing
|
||||
|
@ -176,8 +182,6 @@ struct GuardByte {
|
|||
public:
|
||||
/// The guard byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
/// Note: On completion, we haven't 'acquired' ownership of anything mutex
|
||||
/// related. The name is simply referring to __cxa_guard_acquire.
|
||||
bool acquire() {
|
||||
// if guard_byte is non-zero, we have already completed initialization
|
||||
// (i.e. release has been called)
|
||||
|
@ -185,8 +189,6 @@ public:
|
|||
}
|
||||
|
||||
/// The guard byte portion of cxa_guard_release.
|
||||
/// Note: On completion, we haven't 'released' ownership of anything mutex
|
||||
/// related. The name is simply referring to __cxa_guard_release.
|
||||
void release() { guard_byte.store(COMPLETE_BIT, std::_AO_Release); }
|
||||
|
||||
/// The guard byte portion of cxa_guard_abort.
|
||||
|
@ -197,89 +199,70 @@ private:
|
|||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// GuardBase
|
||||
// InitByte Implementations
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
enum class AcquireResult {
|
||||
INIT_IS_DONE,
|
||||
INIT_IS_PENDING,
|
||||
};
|
||||
constexpr AcquireResult INIT_IS_DONE = AcquireResult::INIT_IS_DONE;
|
||||
constexpr AcquireResult INIT_IS_PENDING = AcquireResult::INIT_IS_PENDING;
|
||||
|
||||
template <class Derived>
|
||||
struct GuardObject {
|
||||
GuardObject() = delete;
|
||||
GuardObject(GuardObject const&) = delete;
|
||||
GuardObject& operator=(GuardObject const&) = delete;
|
||||
|
||||
private:
|
||||
GuardByte guard_byte;
|
||||
|
||||
public:
|
||||
/// ARM Constructor
|
||||
explicit GuardObject(uint32_t* g)
|
||||
: guard_byte(reinterpret_cast<uint8_t*>(g)), base_address(g),
|
||||
init_byte_address(reinterpret_cast<uint8_t*>(g) + 1), thread_id_address(nullptr) {}
|
||||
|
||||
/// Itanium Constructor
|
||||
explicit GuardObject(uint64_t* g)
|
||||
: guard_byte(reinterpret_cast<uint8_t*>(g)), base_address(g),
|
||||
init_byte_address(reinterpret_cast<uint8_t*>(g) + 1), thread_id_address(reinterpret_cast<uint32_t*>(g) + 1) {}
|
||||
|
||||
/// Implements __cxa_guard_acquire.
|
||||
AcquireResult cxa_guard_acquire() {
|
||||
if (guard_byte.acquire())
|
||||
return INIT_IS_DONE;
|
||||
return derived()->acquire_init_byte();
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_release.
|
||||
void cxa_guard_release() {
|
||||
// Update guard byte first, so if somebody is woken up by release_init_byte
|
||||
// and comes all the way back around to __cxa_guard_acquire again, they see
|
||||
// it as having completed initialization.
|
||||
guard_byte.release();
|
||||
derived()->release_init_byte();
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_abort.
|
||||
void cxa_guard_abort() {
|
||||
guard_byte.abort();
|
||||
derived()->abort_init_byte();
|
||||
}
|
||||
|
||||
public:
|
||||
/// base_address - the address of the original guard object.
|
||||
void* const base_address;
|
||||
/// The address of the byte used by the implementation during initialization.
|
||||
uint8_t* const init_byte_address;
|
||||
/// An optional address storing an identifier for the thread performing initialization.
|
||||
/// It's used to detect recursive initialization.
|
||||
uint32_t* const thread_id_address;
|
||||
|
||||
private:
|
||||
Derived* derived() { return static_cast<Derived*>(this); }
|
||||
};
|
||||
//
|
||||
// Each initialization byte implementation supports the following methods:
|
||||
//
|
||||
// InitByte(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
|
||||
// Construct the InitByte object, initializing our member variables
|
||||
//
|
||||
// bool acquire()
|
||||
// Called before we start the initialization. Check if someone else has already started, and if
|
||||
// not to signal our intent to start it ourselves. We determine the current status from the init
|
||||
// byte, which is one of 4 possible values:
|
||||
// COMPLETE: Initialization was finished by somebody else. Return true.
|
||||
// PENDING: Somebody has started the initialization already, set the WAITING bit,
|
||||
// then wait for the init byte to get updated with a new value.
|
||||
// (PENDING|WAITING): Somebody has started the initialization already, and we're not the
|
||||
// first one waiting. Wait for the init byte to get updated.
|
||||
// UNSET: Initialization hasn't successfully completed, and nobody is currently
|
||||
// performing the initialization. Set the PENDING bit to indicate our
|
||||
// intention to start the initialization, and return false.
|
||||
// The return value indicates whether initialization has already been completed.
|
||||
//
|
||||
// void release()
|
||||
// Called after successfully completing the initialization. Update the init byte to reflect
|
||||
// that, then if anybody else is waiting, wake them up.
|
||||
//
|
||||
// void abort()
|
||||
// Called after an error is thrown during the initialization. Reset the init byte to UNSET to
|
||||
// indicate that we're no longer performing the initialization, then if anybody is waiting, wake
|
||||
// them up so they can try performing the initialization.
|
||||
//
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Single Threaded Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct InitByteNoThreads : GuardObject<InitByteNoThreads> {
|
||||
using GuardObject::GuardObject;
|
||||
/// InitByteNoThreads - Doesn't use any inter-thread synchronization when
|
||||
/// managing reads and writes to the init byte.
|
||||
struct InitByteNoThreads {
|
||||
InitByteNoThreads() = delete;
|
||||
InitByteNoThreads(InitByteNoThreads const&) = delete;
|
||||
InitByteNoThreads& operator=(InitByteNoThreads const&) = delete;
|
||||
|
||||
AcquireResult acquire_init_byte() {
|
||||
explicit InitByteNoThreads(uint8_t* _init_byte_address, uint32_t*) : init_byte_address(_init_byte_address) {}
|
||||
|
||||
/// The init byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
if (*init_byte_address == COMPLETE_BIT)
|
||||
return INIT_IS_DONE;
|
||||
return true;
|
||||
if (*init_byte_address & PENDING_BIT)
|
||||
ABORT_WITH_MESSAGE("__cxa_guard_acquire detected recursive initialization");
|
||||
*init_byte_address = PENDING_BIT;
|
||||
return INIT_IS_PENDING;
|
||||
return false;
|
||||
}
|
||||
|
||||
void release_init_byte() { *init_byte_address = COMPLETE_BIT; }
|
||||
void abort_init_byte() { *init_byte_address = UNSET; }
|
||||
/// The init byte portion of cxa_guard_release.
|
||||
void release() { *init_byte_address = COMPLETE_BIT; }
|
||||
/// The init byte portion of cxa_guard_abort.
|
||||
void abort() { *init_byte_address = UNSET; }
|
||||
|
||||
private:
|
||||
/// The address of the byte used during initialization.
|
||||
uint8_t* const init_byte_address;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -319,18 +302,20 @@ struct LibcppMutex {};
|
|||
struct LibcppCondVar {};
|
||||
#endif // !defined(_LIBCXXABI_HAS_NO_THREADS)
|
||||
|
||||
/// InitByteGlobalMutex - Uses a global mutex and condition variable (common to
|
||||
/// all static local variables) to manage reads and writes to the init byte.
|
||||
template <class Mutex, class CondVar, Mutex& global_mutex, CondVar& global_cond,
|
||||
uint32_t (*GetThreadID)() = PlatformThreadID>
|
||||
struct InitByteGlobalMutex : GuardObject<InitByteGlobalMutex<Mutex, CondVar, global_mutex, global_cond, GetThreadID>> {
|
||||
struct InitByteGlobalMutex {
|
||||
|
||||
using BaseT = typename InitByteGlobalMutex::GuardObject;
|
||||
using BaseT::BaseT;
|
||||
|
||||
explicit InitByteGlobalMutex(uint32_t* g) : BaseT(g), has_thread_id_support(false) {}
|
||||
explicit InitByteGlobalMutex(uint64_t* g) : BaseT(g), has_thread_id_support(GetThreadID != nullptr) {}
|
||||
explicit InitByteGlobalMutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
|
||||
: init_byte_address(_init_byte_address), thread_id_address(_thread_id_address),
|
||||
has_thread_id_support(_thread_id_address != nullptr && GetThreadID != nullptr) {}
|
||||
|
||||
public:
|
||||
AcquireResult acquire_init_byte() {
|
||||
/// The init byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
LockGuard g("__cxa_guard_acquire");
|
||||
// Check for possible recursive initialization.
|
||||
if (has_thread_id_support && (*init_byte_address & PENDING_BIT)) {
|
||||
|
@ -345,16 +330,17 @@ public:
|
|||
}
|
||||
|
||||
if (*init_byte_address == COMPLETE_BIT)
|
||||
return INIT_IS_DONE;
|
||||
return true;
|
||||
|
||||
if (has_thread_id_support)
|
||||
*thread_id_address = current_thread_id.get();
|
||||
|
||||
*init_byte_address = PENDING_BIT;
|
||||
return INIT_IS_PENDING;
|
||||
return false;
|
||||
}
|
||||
|
||||
void release_init_byte() {
|
||||
/// The init byte portion of cxa_guard_release.
|
||||
void release() {
|
||||
bool has_waiting;
|
||||
{
|
||||
LockGuard g("__cxa_guard_release");
|
||||
|
@ -368,7 +354,8 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void abort_init_byte() {
|
||||
/// The init byte portion of cxa_guard_abort.
|
||||
void abort() {
|
||||
bool has_waiting;
|
||||
{
|
||||
LockGuard g("__cxa_guard_abort");
|
||||
|
@ -385,8 +372,12 @@ public:
|
|||
}
|
||||
|
||||
private:
|
||||
using BaseT::init_byte_address;
|
||||
using BaseT::thread_id_address;
|
||||
/// The address of the byte used during initialization.
|
||||
uint8_t* const init_byte_address;
|
||||
/// An optional address storing an identifier for the thread performing initialization.
|
||||
/// It's used to detect recursive initialization.
|
||||
uint32_t* const thread_id_address;
|
||||
|
||||
const bool has_thread_id_support;
|
||||
LazyValue<uint32_t, GetThreadID> current_thread_id;
|
||||
|
||||
|
@ -433,38 +424,32 @@ constexpr void (*PlatformFutexWake)(int*) = nullptr;
|
|||
|
||||
constexpr bool PlatformSupportsFutex() { return +PlatformFutexWait != nullptr; }
|
||||
|
||||
/// InitByteFutex - Manages initialization using atomics and the futex syscall
|
||||
/// for waiting and waking.
|
||||
/// InitByteFutex - Uses a futex to manage reads and writes to the init byte.
|
||||
template <void (*Wait)(int*, int) = PlatformFutexWait, void (*Wake)(int*) = PlatformFutexWake,
|
||||
uint32_t (*GetThreadIDArg)() = PlatformThreadID>
|
||||
struct InitByteFutex : GuardObject<InitByteFutex<Wait, Wake, GetThreadIDArg>> {
|
||||
using BaseT = typename InitByteFutex::GuardObject;
|
||||
struct InitByteFutex {
|
||||
|
||||
/// ARM Constructor
|
||||
explicit InitByteFutex(uint32_t* g)
|
||||
: BaseT(g), init_byte(this->init_byte_address),
|
||||
has_thread_id_support(this->thread_id_address && GetThreadIDArg != nullptr),
|
||||
thread_id(this->thread_id_address) {}
|
||||
|
||||
/// Itanium Constructor
|
||||
explicit InitByteFutex(uint64_t* g)
|
||||
: BaseT(g), init_byte(this->init_byte_address),
|
||||
has_thread_id_support(this->thread_id_address && GetThreadIDArg != nullptr),
|
||||
thread_id(this->thread_id_address) {}
|
||||
explicit InitByteFutex(uint8_t* _init_byte_address, uint32_t* _thread_id_address)
|
||||
: init_byte(_init_byte_address),
|
||||
has_thread_id_support(_thread_id_address != nullptr && GetThreadIDArg != nullptr),
|
||||
thread_id(_thread_id_address),
|
||||
base_address(reinterpret_cast<int*>(/*_init_byte_address & ~0x3*/ _init_byte_address - 1)) {}
|
||||
|
||||
public:
|
||||
AcquireResult acquire_init_byte() {
|
||||
/// The init byte portion of cxa_guard_acquire. Returns true if
|
||||
/// initialization has already been completed.
|
||||
bool acquire() {
|
||||
while (true) {
|
||||
uint8_t last_val = UNSET;
|
||||
if (init_byte.compare_exchange(&last_val, PENDING_BIT, std::_AO_Acq_Rel, std::_AO_Acquire)) {
|
||||
if (has_thread_id_support) {
|
||||
thread_id.store(current_thread_id.get(), std::_AO_Relaxed);
|
||||
}
|
||||
return INIT_IS_PENDING;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (last_val == COMPLETE_BIT)
|
||||
return INIT_IS_DONE;
|
||||
return true;
|
||||
|
||||
if (last_val & PENDING_BIT) {
|
||||
|
||||
|
@ -481,7 +466,7 @@ public:
|
|||
if (!init_byte.compare_exchange(&last_val, PENDING_BIT | WAITING_BIT, std::_AO_Acq_Rel, std::_AO_Release)) {
|
||||
// (1) success, via someone else's work!
|
||||
if (last_val == COMPLETE_BIT)
|
||||
return INIT_IS_DONE;
|
||||
return true;
|
||||
|
||||
// (3) someone else, bailed on doing the work, retry from the start!
|
||||
if (last_val == UNSET)
|
||||
|
@ -495,13 +480,15 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
void release_init_byte() {
|
||||
/// The init byte portion of cxa_guard_release.
|
||||
void release() {
|
||||
uint8_t old = init_byte.exchange(COMPLETE_BIT, std::_AO_Acq_Rel);
|
||||
if (old & WAITING_BIT)
|
||||
wake_all();
|
||||
}
|
||||
|
||||
void abort_init_byte() {
|
||||
/// The init byte portion of cxa_guard_abort.
|
||||
void abort() {
|
||||
if (has_thread_id_support)
|
||||
thread_id.store(0, std::_AO_Relaxed);
|
||||
|
||||
|
@ -512,12 +499,11 @@ public:
|
|||
|
||||
private:
|
||||
/// Use the futex to wait on the current guard variable. Futex expects a
|
||||
/// 32-bit 4-byte aligned address as the first argument, so we have to use use
|
||||
/// the base address of the guard variable (not the init byte).
|
||||
void wait_on_initialization() {
|
||||
Wait(static_cast<int*>(this->base_address), expected_value_for_futex(PENDING_BIT | WAITING_BIT));
|
||||
}
|
||||
void wake_all() { Wake(static_cast<int*>(this->base_address)); }
|
||||
/// 32-bit 4-byte aligned address as the first argument, so we use the 4-byte
|
||||
/// aligned address that encompasses the init byte (i.e. the address of the
|
||||
/// raw guard object that was passed to __cxa_guard_acquire/release/abort).
|
||||
void wait_on_initialization() { Wait(base_address, expected_value_for_futex(PENDING_BIT | WAITING_BIT)); }
|
||||
void wake_all() { Wake(base_address); }
|
||||
|
||||
private:
|
||||
AtomicInt<uint8_t> init_byte;
|
||||
|
@ -527,6 +513,10 @@ private:
|
|||
AtomicInt<uint32_t> thread_id;
|
||||
LazyValue<uint32_t, GetThreadIDArg> current_thread_id;
|
||||
|
||||
/// the 4-byte-aligned address that encompasses the init byte (i.e. the
|
||||
/// address of the raw guard object).
|
||||
int* const base_address;
|
||||
|
||||
/// Create the expected integer value for futex `wait(int* addr, int expected)`.
|
||||
/// We pass the base address as the first argument, So this function creates
|
||||
/// an zero-initialized integer with `b` copied at the correct offset.
|
||||
|
@ -539,6 +529,66 @@ private:
|
|||
static_assert(Wait != nullptr && Wake != nullptr, "");
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// GuardObject
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
enum class AcquireResult {
|
||||
INIT_IS_DONE,
|
||||
INIT_IS_PENDING,
|
||||
};
|
||||
constexpr AcquireResult INIT_IS_DONE = AcquireResult::INIT_IS_DONE;
|
||||
constexpr AcquireResult INIT_IS_PENDING = AcquireResult::INIT_IS_PENDING;
|
||||
|
||||
/// Co-ordinates between GuardByte and InitByte.
|
||||
template <class InitByteT>
|
||||
struct GuardObject {
|
||||
GuardObject() = delete;
|
||||
GuardObject(GuardObject const&) = delete;
|
||||
GuardObject& operator=(GuardObject const&) = delete;
|
||||
|
||||
private:
|
||||
GuardByte guard_byte;
|
||||
InitByteT init_byte;
|
||||
|
||||
public:
|
||||
/// ARM Constructor
|
||||
explicit GuardObject(uint32_t* raw_guard_object)
|
||||
: guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
|
||||
init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, nullptr) {}
|
||||
|
||||
/// Itanium Constructor
|
||||
explicit GuardObject(uint64_t* raw_guard_object)
|
||||
: guard_byte(reinterpret_cast<uint8_t*>(raw_guard_object)),
|
||||
init_byte(reinterpret_cast<uint8_t*>(raw_guard_object) + 1, reinterpret_cast<uint32_t*>(raw_guard_object) + 1) {
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_acquire.
|
||||
AcquireResult cxa_guard_acquire() {
|
||||
// Use short-circuit evaluation to avoid calling init_byte.acquire when
|
||||
// guard_byte.acquire returns true. (i.e. don't call it when we know from
|
||||
// the guard byte that initialization has already been completed)
|
||||
if (guard_byte.acquire() || init_byte.acquire())
|
||||
return INIT_IS_DONE;
|
||||
return INIT_IS_PENDING;
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_release.
|
||||
void cxa_guard_release() {
|
||||
// Update guard byte first, so if somebody is woken up by init_byte.release
|
||||
// and comes all the way back around to __cxa_guard_acquire again, they see
|
||||
// it as having completed initialization.
|
||||
guard_byte.release();
|
||||
init_byte.release();
|
||||
}
|
||||
|
||||
/// Implements __cxa_guard_abort.
|
||||
void cxa_guard_abort() {
|
||||
guard_byte.abort();
|
||||
init_byte.abort();
|
||||
}
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -555,20 +605,23 @@ enum class Implementation { NoThreads, GlobalMutex, Futex };
|
|||
template <Implementation Impl>
|
||||
struct SelectImplementation;
|
||||
|
||||
/// Manage initialization without performing any inter-thread synchronization.
|
||||
template <>
|
||||
struct SelectImplementation<Implementation::NoThreads> {
|
||||
using type = InitByteNoThreads;
|
||||
using type = GuardObject<InitByteNoThreads>;
|
||||
};
|
||||
|
||||
/// Manage initialization using a global mutex and condition variable.
|
||||
template <>
|
||||
struct SelectImplementation<Implementation::GlobalMutex> {
|
||||
using type = InitByteGlobalMutex<LibcppMutex, LibcppCondVar, GlobalStatic<LibcppMutex>::instance,
|
||||
GlobalStatic<LibcppCondVar>::instance, PlatformThreadID>;
|
||||
using type = GuardObject<InitByteGlobalMutex<LibcppMutex, LibcppCondVar, GlobalStatic<LibcppMutex>::instance,
|
||||
GlobalStatic<LibcppCondVar>::instance, PlatformThreadID>>;
|
||||
};
|
||||
|
||||
/// Manage initialization using atomics and the futex syscall for waiting and waking.
|
||||
template <>
|
||||
struct SelectImplementation<Implementation::Futex> {
|
||||
using type = InitByteFutex<PlatformFutexWait, PlatformFutexWake, PlatformThreadID>;
|
||||
using type = GuardObject<InitByteFutex<PlatformFutexWait, PlatformFutexWake, PlatformThreadID>>;
|
||||
};
|
||||
|
||||
// TODO(EricWF): We should prefer the futex implementation when available. But
|
||||
|
|
|
@ -119,16 +119,13 @@ int main(int, char**) {
|
|||
{
|
||||
#if defined(_LIBCXXABI_HAS_NO_THREADS)
|
||||
static_assert(CurrentImplementation == Implementation::NoThreads, "");
|
||||
static_assert(
|
||||
std::is_same<SelectedImplementation, InitByteNoThreads>::value, "");
|
||||
static_assert(std::is_same<SelectedImplementation, GuardObject<InitByteNoThreads>>::value, "");
|
||||
#else
|
||||
static_assert(CurrentImplementation == Implementation::GlobalMutex, "");
|
||||
static_assert(
|
||||
std::is_same<
|
||||
SelectedImplementation,
|
||||
InitByteGlobalMutex<LibcppMutex, LibcppCondVar,
|
||||
GlobalStatic<LibcppMutex>::instance,
|
||||
GlobalStatic<LibcppCondVar>::instance>>::value,
|
||||
std::is_same<SelectedImplementation,
|
||||
GuardObject<InitByteGlobalMutex<LibcppMutex, LibcppCondVar, GlobalStatic<LibcppMutex>::instance,
|
||||
GlobalStatic<LibcppCondVar>::instance>>>::value,
|
||||
"");
|
||||
#endif
|
||||
}
|
||||
|
@ -142,19 +139,17 @@ int main(int, char**) {
|
|||
}
|
||||
}
|
||||
{
|
||||
Tests<uint32_t, InitByteNoThreads>::test();
|
||||
Tests<uint64_t, InitByteNoThreads>::test();
|
||||
Tests<uint32_t, GuardObject<InitByteNoThreads>>::test();
|
||||
Tests<uint64_t, GuardObject<InitByteNoThreads>>::test();
|
||||
}
|
||||
{
|
||||
using MutexImpl =
|
||||
InitByteGlobalMutex<NopMutex, NopCondVar, global_nop_mutex,
|
||||
global_nop_cond, MockGetThreadID>;
|
||||
GuardObject<InitByteGlobalMutex<NopMutex, NopCondVar, global_nop_mutex, global_nop_cond, MockGetThreadID>>;
|
||||
Tests<uint32_t, MutexImpl>::test();
|
||||
Tests<uint64_t, MutexImpl>::test();
|
||||
}
|
||||
{
|
||||
using FutexImpl =
|
||||
InitByteFutex<&NopFutexWait, &NopFutexWake, &MockGetThreadID>;
|
||||
using FutexImpl = GuardObject<InitByteFutex<&NopFutexWait, &NopFutexWake, &MockGetThreadID>>;
|
||||
Tests<uint32_t, FutexImpl>::test();
|
||||
Tests<uint64_t, FutexImpl>::test();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue