Prune the search for candidate formulae if the number of register

operands exceeds the number of registers used in the initial
solution, as that wouldn't lead to a profitable solution anyway.

llvm-svn: 94107
This commit is contained in:
Dan Gohman 2010-01-21 22:42:49 +00:00
parent fcd6f94ba7
commit 29916e023d
1 changed files with 67 additions and 32 deletions

View File

@ -1120,6 +1120,8 @@ public:
const SmallVector<LSRUse, 16> &Uses, const Loop *L, const SmallVector<LSRUse, 16> &Uses, const Loop *L,
ScalarEvolution &SE); ScalarEvolution &SE);
unsigned getNumRegs() const { return NumRegs; }
bool operator<(const Score &Other) const; bool operator<(const Score &Other) const;
void print_details(raw_ostream &OS, const SCEV *Reg, void print_details(raw_ostream &OS, const SCEV *Reg,
@ -1383,6 +1385,11 @@ class LSRInstance {
/// arbitrary index value to each register as a sort tie breaker. /// arbitrary index value to each register as a sort tie breaker.
unsigned CurrentArbitraryRegIndex; unsigned CurrentArbitraryRegIndex;
/// MaxNumRegs - To help prune the search for solutions, identify the number
/// of registers needed by the initial solution. No formula should require
/// more than this.
unsigned MaxNumRegs;
/// Factors - Interesting factors between use strides. /// Factors - Interesting factors between use strides.
SmallSetVector<int64_t, 4> Factors; SmallSetVector<int64_t, 4> Factors;
@ -1412,6 +1419,8 @@ class LSRInstance {
void CountRegister(const SCEV *Reg, uint32_t Complexity, size_t LUIdx); void CountRegister(const SCEV *Reg, uint32_t Complexity, size_t LUIdx);
void CountRegisters(const Formula &F, size_t LUIdx); void CountRegisters(const Formula &F, size_t LUIdx);
bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
void GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx, void GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx,
Formula Base); Formula Base);
void GenerateICmpZeroScaledReuse(LSRUse &LU, unsigned LUIdx, void GenerateICmpZeroScaledReuse(LSRUse &LU, unsigned LUIdx,
@ -1913,6 +1922,23 @@ void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
CountRegister(*I, Complexity, LUIdx); CountRegister(*I, Complexity, LUIdx);
} }
/// InsertFormula - If the given formula has not yet been inserted, add it
/// to the list, and return true. Return false otherwise.
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
// If a formula by itself would require more registers than the base solution,
// discard it and stop searching from it, as it won't be profitable. This is
// actually more permissive than it could be, because it doesn't include
// registers used by non-constant strides in F.
if (F.getNumRegs() > MaxNumRegs)
return false;
if (!LU.InsertFormula(F))
return false;
CountRegisters(LU.Formulae.back(), LUIdx);
return true;
}
/// GenerateSymbolicOffsetReuse - Generate reuse formulae using symbolic /// GenerateSymbolicOffsetReuse - Generate reuse formulae using symbolic
/// offsets. /// offsets.
void LSRInstance::GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx, void LSRInstance::GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx,
@ -1930,8 +1956,7 @@ void LSRInstance::GenerateSymbolicOffsetReuse(LSRUse &LU, unsigned LUIdx,
if (!isLegalUse(F.AM, LU.Kind, LU.AccessTy, TLI)) if (!isLegalUse(F.AM, LU.Kind, LU.AccessTy, TLI))
continue; continue;
F.BaseRegs[i] = G; F.BaseRegs[i] = G;
if (LU.InsertFormula(F)) (void)InsertFormula(LU, LUIdx, F);
CountRegisters(LU.Formulae.back(), LUIdx);
} }
} }
@ -1981,8 +2006,7 @@ void LSRInstance::GenerateICmpZeroScaledReuse(LSRUse &LU, unsigned LUIdx,
} }
// If we make it here and it's legal, add it. // If we make it here and it's legal, add it.
if (LU.InsertFormula(F)) (void)InsertFormula(LU, LUIdx, F);
CountRegisters(LU.Formulae.back(), LUIdx);
next:; next:;
} }
} }
@ -2006,11 +2030,9 @@ LSRInstance::GenerateFormulaeFromReplacedBaseReg(
E = AddOps.end(); I != E; ++I) E = AddOps.end(); I != E; ++I)
F.BaseRegs.push_back(*I); F.BaseRegs.push_back(*I);
F.AM.HasBaseReg = !F.BaseRegs.empty(); F.AM.HasBaseReg = !F.BaseRegs.empty();
if (LU.InsertFormula(F)) { if (InsertFormula(LU, LUIdx, F))
CountRegisters(LU.Formulae.back(), LUIdx); // If that formula hadn't been seen before, recurse to find more like it.
// Recurse.
GenerateReassociationReuse(LU, LUIdx, LU.Formulae.back()); GenerateReassociationReuse(LU, LUIdx, LU.Formulae.back());
}
} }
/// GenerateReassociationReuse - Split out subexpressions from adds and /// GenerateReassociationReuse - Split out subexpressions from adds and
@ -2095,8 +2117,7 @@ void LSRInstance::GenerateCombinationReuse(LSRUse &LU, unsigned LUIdx,
} }
if (Ops.size() > 1) { if (Ops.size() > 1) {
F.BaseRegs.push_back(SE.getAddExpr(Ops)); F.BaseRegs.push_back(SE.getAddExpr(Ops));
if (LU.InsertFormula(F)) (void)InsertFormula(LU, LUIdx, F);
CountRegisters(LU.Formulae.back(), LUIdx);
} }
} }
@ -2144,8 +2165,7 @@ void LSRInstance::GenerateScaledReuse(LSRUse &LU, unsigned LUIdx,
std::swap(NewF.BaseRegs[i], NewF.BaseRegs.back()); std::swap(NewF.BaseRegs[i], NewF.BaseRegs.back());
NewF.BaseRegs.pop_back(); NewF.BaseRegs.pop_back();
NewF.AM.HasBaseReg = !NewF.BaseRegs.empty(); NewF.AM.HasBaseReg = !NewF.BaseRegs.empty();
if (LU.InsertFormula(NewF)) (void)InsertFormula(LU, LUIdx, NewF);
CountRegisters(LU.Formulae.back(), LUIdx);
} }
} }
} }
@ -2174,8 +2194,7 @@ void LSRInstance::GenerateTruncateReuse(LSRUse &LU, unsigned LUIdx,
for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
JE = F.BaseRegs.end(); J != JE; ++J) JE = F.BaseRegs.end(); J != JE; ++J)
*J = SE.getAnyExtendExpr(*J, SrcTy); *J = SE.getAnyExtendExpr(*J, SrcTy);
if (LU.InsertFormula(F)) (void)InsertFormula(LU, LUIdx, F);
CountRegisters(LU.Formulae.back(), LUIdx);
} }
} }
} }
@ -2300,8 +2319,7 @@ void LSRInstance::GenerateConstantOffsetReuse() {
const SCEV *Diff = SE.getAddExpr(NegImmS, NewF.ScaledReg); const SCEV *Diff = SE.getAddExpr(NegImmS, NewF.ScaledReg);
if (Diff->isZero()) continue; if (Diff->isZero()) continue;
NewF.ScaledReg = Diff; NewF.ScaledReg = Diff;
if (LU.InsertFormula(NewF)) (void)InsertFormula(LU, LUIdx, NewF);
CountRegisters(LU.Formulae.back(), LUIdx);
} }
// Use the immediate in a base register. // Use the immediate in a base register.
for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
@ -2320,8 +2338,7 @@ void LSRInstance::GenerateConstantOffsetReuse() {
-(uint64_t)NewF.AM.BaseOffs))) -(uint64_t)NewF.AM.BaseOffs)))
continue; continue;
NewF.BaseRegs[N] = Diff; NewF.BaseRegs[N] = Diff;
if (LU.InsertFormula(NewF)) (void)InsertFormula(LU, LUIdx, NewF);
CountRegisters(LU.Formulae.back(), LUIdx);
} }
} }
} }
@ -2358,8 +2375,19 @@ LSRInstance::GenerateAllReuseFormulae() {
/// TODO: Should this give more weight to users inside the loop? /// TODO: Should this give more weight to users inside the loop?
void void
LSRInstance::GenerateLoopInvariantRegisterUses() { LSRInstance::GenerateLoopInvariantRegisterUses() {
for (size_t i = 0, e = RegSequence.size(); i != e; ++i) SmallVector<const SCEV *, 8> Worklist(RegSequence.begin(), RegSequence.end());
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(RegSequence[i])) {
while (!Worklist.empty()) {
const SCEV *S = Worklist.pop_back_val();
if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
Worklist.push_back(C->getOperand());
else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
Worklist.push_back(D->getLHS());
Worklist.push_back(D->getRHS());
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
const Value *V = U->getValue(); const Value *V = U->getValue();
if (const Instruction *Inst = dyn_cast<Instruction>(V)) if (const Instruction *Inst = dyn_cast<Instruction>(V))
if (L->contains(Inst)) continue; if (L->contains(Inst)) continue;
@ -2400,6 +2428,7 @@ LSRInstance::GenerateLoopInvariantRegisterUses() {
CountRegisters(LU.Formulae.back(), Uses.size() - 1); CountRegisters(LU.Formulae.back(), Uses.size() - 1);
} }
} }
}
} }
#ifndef NDEBUG #ifndef NDEBUG
@ -2424,7 +2453,7 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
: IU(P->getAnalysis<IVUsers>()), : IU(P->getAnalysis<IVUsers>()),
SE(P->getAnalysis<ScalarEvolution>()), SE(P->getAnalysis<ScalarEvolution>()),
DT(P->getAnalysis<DominatorTree>()), DT(P->getAnalysis<DominatorTree>()),
TLI(tli), L(l), Changed(false), CurrentArbitraryRegIndex(0) { TLI(tli), L(l), Changed(false), CurrentArbitraryRegIndex(0), MaxNumRegs(0) {
// If LoopSimplify form is not available, stay out of trouble. // If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm()) return; if (!L->isLoopSimplifyForm()) return;
@ -2538,15 +2567,24 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
if (Types.size() == 1) if (Types.size() == 1)
Types.clear(); Types.clear();
// Now use the reuse data to generate a bunch of interesting ways
// to formulate the values needed for the uses.
GenerateAllReuseFormulae();
// If there are any uses of registers that we're tracking that have escaped // If there are any uses of registers that we're tracking that have escaped
// IVUsers' attention, add trivial uses for them, so that the register // IVUsers' attention, add trivial uses for them, so that the register
// voting process takes the into consideration. // voting process takes the into consideration.
GenerateLoopInvariantRegisterUses(); GenerateLoopInvariantRegisterUses();
// Start by assuming we'll assign each use its own register. This is
// sometimes called "full" strength reduction, or "superhero" mode.
// Sometimes this is the best solution, but if there are opportunities for
// reuse we may find a better solution.
Score CurScore;
CurScore.RateInitial(Uses, L, SE);
MaxNumRegs = CurScore.getNumRegs();
// Now use the reuse data to generate a bunch of interesting ways
// to formulate the values needed for the uses.
GenerateAllReuseFormulae();
// Sort the formulae. TODO: This is redundantly sorted below. // Sort the formulae. TODO: This is redundantly sorted below.
for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(), E = Uses.end(); for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(), E = Uses.end();
I != E; ++I) { I != E; ++I) {
@ -2559,13 +2597,6 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
// next step is to start looking at register reuse possibilities. // next step is to start looking at register reuse possibilities.
DEBUG(print(dbgs()); dbgs() << '\n'); DEBUG(print(dbgs()); dbgs() << '\n');
// Start by assuming we'll assign each use its own register. This is
// sometimes called "full" strength reduction, or "superhero" mode.
// Sometimes this is the best solution, but if there are opportunities for
// reuse we may find a better solution.
Score CurScore;
CurScore.RateInitial(Uses, L, SE);
// Create a sorted list of registers with those with the most uses appearing // Create a sorted list of registers with those with the most uses appearing
// earlier in the list. We'll visit them first, as they're the most likely // earlier in the list. We'll visit them first, as they're the most likely
// to represent profitable reuse opportunities. // to represent profitable reuse opportunities.
@ -2669,6 +2700,10 @@ LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
} }
void LSRInstance::print(raw_ostream &OS) const { void LSRInstance::print(raw_ostream &OS) const {
if (MaxNumRegs != 0)
OS << "LSR is considering " << MaxNumRegs << " to be the maximum "
"number of registers needed.\n";
OS << "LSR has identified the following interesting factors and types: "; OS << "LSR has identified the following interesting factors and types: ";
bool First = true; bool First = true;