Implement AVX ABI Warning/error

The x86-64 "avx" feature changes how >128 bit vector types are passed,
instead of being passed in separate 128 bit registers, they can be
passed in 256 bit registers.

"avx512f" does the same thing, except it switches from 256 bit registers
to 512 bit registers.

The result of both of these is an ABI incompatibility between functions
compiled with and without these features.

This patch implements a warning/error pair upon an attempt to call a
function that would run afoul of this. First, if a function is called
that would have its ABI changed, we issue a warning.

Second, if said call is made in a situation where the caller and callee
are known to have different calling conventions (such as the case of
'target'), we instead issue an error.

Differential Revision: https://reviews.llvm.org/D82562
This commit is contained in:
Erich Keane 2020-06-23 12:14:09 -07:00
parent 97a7a9abb2
commit 2831a317b6
7 changed files with 181 additions and 8 deletions

View File

@ -240,6 +240,12 @@ def err_function_needs_feature : Error<
"always_inline function %1 requires target feature '%2', but would "
"be inlined into function %0 that is compiled without support for '%2'">;
def warn_avx_calling_convention
: Warning<"AVX vector %select{return|argument}0 of type %1 without '%2' "
"enabled changes the ABI">,
InGroup<DiagGroup<"psabi">>;
def err_avx_calling_convention : Error<warn_avx_calling_convention.Text>;
def err_alias_to_undefined : Error<
"%select{alias|ifunc}0 must point to a defined "
"%select{variable or |}1function">;

View File

@ -4245,7 +4245,7 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
// We can only guarantee that a function is called from the correct
// context/function based on the appropriate target attributes,
// so only check in the case where we have both always_inline and target
@ -4256,6 +4256,12 @@ RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
TargetDecl->hasAttr<TargetAttr>())
checkTargetFeatures(Loc, FD);
// Some architectures (such as x86-64) have the ABI changed based on
// attribute-target/features. Give them a chance to diagnose.
CGM.getTargetCodeGenInfo().checkFunctionCallABI(
CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
}
#ifndef NDEBUG
if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
// For an inalloca varargs function, we don't expect CallInfo to match the

View File

@ -20,6 +20,7 @@
#include "clang/AST/Attr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/CodeGen/SwiftCallingConv.h"
#include "llvm/ADT/SmallBitVector.h"
@ -2466,8 +2467,110 @@ public:
}
}
}
void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
const FunctionDecl *Caller,
const FunctionDecl *Callee,
const CallArgList &Args) const override;
};
static void initFeatureMaps(const ASTContext &Ctx,
llvm::StringMap<bool> &CallerMap,
const FunctionDecl *Caller,
llvm::StringMap<bool> &CalleeMap,
const FunctionDecl *Callee) {
if (CalleeMap.empty() && CallerMap.empty()) {
// The caller is potentially nullptr in the case where the call isn't in a
// function. In this case, the getFunctionFeatureMap ensures we just get
// the TU level setting (since it cannot be modified by 'target'..
Ctx.getFunctionFeatureMap(CallerMap, Caller);
Ctx.getFunctionFeatureMap(CalleeMap, Callee);
}
}
static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
SourceLocation CallLoc,
const llvm::StringMap<bool> &CallerMap,
const llvm::StringMap<bool> &CalleeMap,
QualType Ty, StringRef Feature,
bool IsArgument) {
bool CallerHasFeat = CallerMap.lookup(Feature);
bool CalleeHasFeat = CalleeMap.lookup(Feature);
if (!CallerHasFeat && !CalleeHasFeat)
return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
<< IsArgument << Ty << Feature;
// Mixing calling conventions here is very clearly an error.
if (!CallerHasFeat || !CalleeHasFeat)
return Diag.Report(CallLoc, diag::err_avx_calling_convention)
<< IsArgument << Ty << Feature;
// Else, both caller and callee have the required feature, so there is no need
// to diagnose.
return false;
}
static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
SourceLocation CallLoc,
const llvm::StringMap<bool> &CallerMap,
const llvm::StringMap<bool> &CalleeMap, QualType Ty,
bool IsArgument) {
uint64_t Size = Ctx.getTypeSize(Ty);
if (Size > 256)
return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
"avx512f", IsArgument);
if (Size > 128)
return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
IsArgument);
return false;
}
void X86_64TargetCodeGenInfo::checkFunctionCallABI(
CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
const FunctionDecl *Callee, const CallArgList &Args) const {
llvm::StringMap<bool> CallerMap;
llvm::StringMap<bool> CalleeMap;
unsigned ArgIndex = 0;
// We need to loop through the actual call arguments rather than the the
// function's parameters, in case this variadic.
for (const CallArg &Arg : Args) {
// The "avx" feature changes how vectors >128 in size are passed. "avx512f"
// additionally changes how vectors >256 in size are passed. Like GCC, we
// warn when a function is called with an argument where this will change.
// Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
// the caller and callee features are mismatched.
// Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
// change its ABI with attribute-target after this call.
if (Arg.getType()->isVectorType() &&
CGM.getContext().getTypeSize(Arg.getType()) > 128) {
initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
QualType Ty = Arg.getType();
// The CallArg seems to have desugared the type already, so for clearer
// diagnostics, replace it with the type in the FunctionDecl if possible.
if (ArgIndex < Callee->getNumParams())
Ty = Callee->getParamDecl(ArgIndex)->getType();
if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
CalleeMap, Ty, /*IsArgument*/ true))
return;
}
++ArgIndex;
}
// Check return always, as we don't have a good way of knowing in codegen
// whether this value is used, tail-called, etc.
if (Callee->getReturnType()->isVectorType() &&
CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
CalleeMap, Callee->getReturnType(),
/*IsArgument*/ false);
}
}
static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
// If the argument does not end in .lib, automatically add the suffix.
// If the argument contains a space, enclose it in quotes.

View File

@ -63,6 +63,13 @@ public:
CodeGen::CodeGenModule &CGM,
const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {}
/// Any further codegen related checks that need to be done on a function call
/// in a target specific manner.
virtual void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
const FunctionDecl *Caller,
const FunctionDecl *Callee,
const CallArgList &Args) const {}
/// Determines the size of struct _Unwind_Exception on this platform,
/// in 8-bit units. The Itanium ABI defines this as:
/// struct _Unwind_Exception {

View File

@ -0,0 +1,50 @@
// RUN: %clang_cc1 %s -triple=x86_64-linux-gnu -verify=no256,no512 -o - -S
// RUN: %clang_cc1 %s -triple=x86_64-linux-gnu -target-feature +avx -verify=no512 -o - -S
// RUN: %clang_cc1 %s -triple=x86_64-linux-gnu -target-feature +avx512f -verify=both -o - -S
// both-no-diagnostics
typedef short avx512fType __attribute__((vector_size(64)));
typedef short avx256Type __attribute__((vector_size(32)));
__attribute__((target("avx"))) void takesAvx256(avx256Type t);
__attribute__((target("avx512f"))) void takesAvx512(avx512fType t);
void takesAvx256_no_target(avx256Type t);
void takesAvx512_no_target(avx512fType t);
void variadic(int i, ...);
__attribute__((target("avx512f"))) void variadic_err(int i, ...);
// If neither side has an attribute, warn.
void call_warn(void) {
avx256Type t1;
takesAvx256_no_target(t1); // no256-warning {{AVX vector argument of type 'avx256Type' (vector of 16 'short' values) without 'avx' enabled changes the ABI}}
avx512fType t2;
takesAvx512_no_target(t2); // no512-warning {{AVX vector argument of type 'avx512fType' (vector of 32 'short' values) without 'avx512f' enabled changes the ABI}}
variadic(1, t1); // no256-warning {{AVX vector argument of type 'avx256Type' (vector of 16 'short' values) without 'avx' enabled changes the ABI}}
variadic(3, t2); // no512-warning {{AVX vector argument of type 'avx512fType' (vector of 32 'short' values) without 'avx512f' enabled changes the ABI}}
}
// If only 1 side has an attribute, error.
void call_errors(void) {
avx256Type t1;
takesAvx256(t1); // no256-error {{AVX vector argument of type 'avx256Type' (vector of 16 'short' values) without 'avx' enabled changes the ABI}}
avx512fType t2;
takesAvx512(t2); // no512-error {{AVX vector argument of type 'avx512fType' (vector of 32 'short' values) without 'avx512f' enabled changes the ABI}}
variadic_err(1, t1); // no256-error {{AVX vector argument of type 'avx256Type' (vector of 16 'short' values) without 'avx' enabled changes the ABI}}
variadic_err(3, t2); // no512-error {{AVX vector argument of type 'avx512fType' (vector of 32 'short' values) without 'avx512f' enabled changes the ABI}}
}
// These two don't diagnose anything, since these are valid calls.
__attribute__((target("avx"))) void call_avx256_ok(void) {
avx256Type t;
takesAvx256(t);
}
__attribute__((target("avx512f"))) void call_avx512_ok(void) {
avx512fType t;
takesAvx512(t);
}

View File

@ -18,11 +18,12 @@ static inline half8 __attribute__((__overloadable__)) convert_half( float8 a ) {
return __extension__ ({ __m256 __a = (a); (__m128i)__builtin_ia32_vcvtps2ph256((__v8sf)__a, (0x00)); }); // expected-error {{'__builtin_ia32_vcvtps2ph256' needs target feature f16c}}
}
static inline half16 __attribute__((__overloadable__)) convert_half( float16 a ) {
half16 r;
r.lo = convert_half( a.lo);
half16 r;
r.lo = convert_half(a.lo);
return r;
}
void avx_test( uint16_t *destData, float16 argbF)
{
((half16U*)destData)[0] = convert_half(argbF);
// expected-warning@+1{{AVX vector argument of type 'float16' (vector of 16 'float' values) without 'avx512f' enabled changes the ABI}}
((half16U *)destData)[0] = convert_half(argbF);
}

View File

@ -6,15 +6,15 @@
// No warnings.
extern __m256i a;
int __attribute__((target("avx"))) bar(__m256i a) {
int __attribute__((target("avx"))) bar() {
return _mm256_extract_epi32(a, 3);
}
int baz() {
return bar(a);
return bar();
}
int __attribute__((target("avx"))) qq_avx(__m256i a) {
int __attribute__((target("avx"))) qq_avx() {
return _mm256_extract_epi32(a, 3);
}
@ -25,7 +25,7 @@ int qq_noavx() {
extern __m256i a;
int qq() {
if (__builtin_cpu_supports("avx"))
return qq_avx(a);
return qq_avx();
else
return qq_noavx();
}