Implement lowering of VectorTypeCastOp to LLVM

A VectorTypeCastOp can only be used to lower between statically sized contiguous memrefs of scalar and matching vector type. The sizes and strides are thus fully static and easy to determine.

A relevant test is added.

This is a step towards solving tensorflow/mlir#189.

PiperOrigin-RevId: 275538981
This commit is contained in:
Nicolas Vasilache 2019-10-18 13:48:26 -07:00 committed by A. Unique TensorFlower
parent 02b3ea6038
commit 2823b68580
4 changed files with 150 additions and 17 deletions

View File

@ -82,6 +82,11 @@ public:
Value *promoteOneMemRefDescriptor(Location loc, Value *operand,
OpBuilder &builder);
static constexpr unsigned kPtrPosInMemRefDescriptor = 0;
static constexpr unsigned kOffsetPosInMemRefDescriptor = 1;
static constexpr unsigned kSizePosInMemRefDescriptor = 2;
static constexpr unsigned kStridePosInMemRefDescriptor = 3;
protected:
/// LLVM IR module used to parse/create types.
llvm::Module *module;

View File

@ -156,10 +156,10 @@ LLVM::LLVMType LLVMTypeConverter::convertFunctionSignature(
// int64_t sizes[Rank]; // omitted when rank == 0
// int64_t strides[Rank]; // omitted when rank == 0
// };
static unsigned kPtrPosInMemRefDescriptor = 0;
static unsigned kOffsetPosInMemRefDescriptor = 1;
static unsigned kSizePosInMemRefDescriptor = 2;
static unsigned kStridePosInMemRefDescriptor = 3;
constexpr unsigned LLVMTypeConverter::kPtrPosInMemRefDescriptor;
constexpr unsigned LLVMTypeConverter::kOffsetPosInMemRefDescriptor;
constexpr unsigned LLVMTypeConverter::kSizePosInMemRefDescriptor;
constexpr unsigned LLVMTypeConverter::kStridePosInMemRefDescriptor;
Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
int64_t offset;
SmallVector<int64_t, 4> strides;
@ -282,7 +282,8 @@ public:
Type elementTypePtr) {
return builder.create<LLVM::ExtractValueOp>(
loc, elementTypePtr, memref,
builder.getIndexArrayAttr(kPtrPosInMemRefDescriptor));
builder.getIndexArrayAttr(
LLVMTypeConverter::kPtrPosInMemRefDescriptor));
}
protected:
@ -763,11 +764,13 @@ struct AllocOpLowering : public LLVMLegalizationPattern<AllocOp> {
memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), structType, memRefDescriptor, allocated,
rewriter.getIndexArrayAttr(kPtrPosInMemRefDescriptor));
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kPtrPosInMemRefDescriptor));
memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), structType, memRefDescriptor,
createIndexConstant(rewriter, op->getLoc(), offset),
rewriter.getIndexArrayAttr(kOffsetPosInMemRefDescriptor));
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kOffsetPosInMemRefDescriptor));
if (type.getRank() == 0)
// No size/stride descriptor in memref, return the descriptor value.
@ -798,10 +801,12 @@ struct AllocOpLowering : public LLVMLegalizationPattern<AllocOp> {
int64_t index = indexedSize.index();
memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), structType, memRefDescriptor, indexedSize.value(),
rewriter.getI64ArrayAttr({kSizePosInMemRefDescriptor, index}));
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kSizePosInMemRefDescriptor, index}));
memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), structType, memRefDescriptor, strideValues[index],
rewriter.getI64ArrayAttr({kStridePosInMemRefDescriptor, index}));
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kStridePosInMemRefDescriptor, index}));
}
// Return the final value of the descriptor.
@ -896,7 +901,8 @@ struct DeallocOpLowering : public LLVMLegalizationPattern<DeallocOp> {
}
auto type = transformed.memref()->getType().cast<LLVM::LLVMType>();
Type elementPtrType = type.getStructElementType(kPtrPosInMemRefDescriptor);
Type elementPtrType =
type.getStructElementType(LLVMTypeConverter::kPtrPosInMemRefDescriptor);
Value *bufferPtr = extractMemRefElementPtr(
rewriter, op->getLoc(), transformed.memref(), elementPtrType);
Value *casted = rewriter.create<LLVM::BitcastOp>(
@ -952,7 +958,8 @@ struct DimOpLowering : public LLVMLegalizationPattern<DimOp> {
if (ShapedType::isDynamic(shape[index]))
rewriter.replaceOpWithNewOp<LLVM::ExtractValueOp>(
op, getIndexType(), transformed.memrefOrTensor(),
rewriter.getI64ArrayAttr({kSizePosInMemRefDescriptor, index}));
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kSizePosInMemRefDescriptor, index}));
else
// Use constant for static size.
rewriter.replaceOp(
@ -1015,7 +1022,8 @@ struct LoadStoreOpLowering : public LLVMLegalizationPattern<Derived> {
offset == MemRefType::getDynamicStrideOrOffset()
? rewriter.create<LLVM::ExtractValueOp>(
loc, indexTy, memRefDescriptor,
rewriter.getIndexArrayAttr(kOffsetPosInMemRefDescriptor))
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kOffsetPosInMemRefDescriptor))
: this->createIndexConstant(rewriter, loc, offset);
for (int i = 0, e = indices.size(); i < e; ++i) {
Value *stride;
@ -1028,7 +1036,8 @@ struct LoadStoreOpLowering : public LLVMLegalizationPattern<Derived> {
// Use dynamic stride.
stride = rewriter.create<LLVM::ExtractValueOp>(
loc, indexTy, memRefDescriptor,
rewriter.getIndexArrayAttr({kStridePosInMemRefDescriptor, i}));
rewriter.getIndexArrayAttr(
{LLVMTypeConverter::kStridePosInMemRefDescriptor, i}));
}
Value *additionalOffset =
rewriter.create<LLVM::MulOp>(loc, indices[i], stride);

View File

@ -155,10 +155,112 @@ public:
}
};
class VectorTypeCastOpConversion : public LLVMOpLowering {
public:
explicit VectorTypeCastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::VectorTypeCastOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
vector::VectorTypeCastOp castOp = cast<vector::VectorTypeCastOp>(op);
MemRefType sourceMemRefType =
castOp.getOperand()->getType().cast<MemRefType>();
MemRefType targetMemRefType =
castOp.getResult()->getType().cast<MemRefType>();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return matchFailure();
Value *sourceMemRef = operands[0];
auto llvmSourceDescriptorTy =
sourceMemRef->getType().dyn_cast<LLVM::LLVMType>();
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
return matchFailure();
auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMType>();
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
return matchFailure();
Type llvmSourceElementTy = llvmSourceDescriptorTy.getStructElementType(
LLVMTypeConverter::kPtrPosInMemRefDescriptor);
Type llvmTargetElementTy = llvmTargetDescriptorTy.getStructElementType(
LLVMTypeConverter::kPtrPosInMemRefDescriptor);
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(targetMemRefType, strides, offset);
bool isContiguous = (strides.back() == 1);
if (isContiguous) {
auto sizes = targetMemRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
isContiguous = false;
break;
}
}
}
// Only contiguous tensors supported atm.
if (failed(successStrides) || !isContiguous)
return matchFailure();
auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
// Create descriptor.
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmTargetDescriptorTy);
// Set ptr.
Value *ptr = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmSourceElementTy, sourceMemRef,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kPtrPosInMemRefDescriptor));
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, ptr,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kPtrPosInMemRefDescriptor));
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, zero,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kOffsetPosInMemRefDescriptor));
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, size,
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kSizePosInMemRefDescriptor, index}));
auto strideAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, stride,
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kStridePosInMemRefDescriptor, index}));
}
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
patterns.insert<ExtractElementOpConversion, OuterProductOpConversion>(
patterns.insert<ExtractElementOpConversion, OuterProductOpConversion,
VectorTypeCastOpConversion>(
converter.getDialect()->getContext(), converter);
}
@ -190,5 +292,5 @@ OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
}
static PassRegistration<LowerVectorToLLVMPass>
pass("vector-lower-to-llvm-dialect",
pass("convert-vector-to-llvm",
"Lower the operations from the vector dialect into the LLVM dialect");

View File

@ -1,4 +1,4 @@
// RUN: mlir-opt %s -vector-lower-to-llvm-dialect | FileCheck %s
// RUN: mlir-opt %s -convert-vector-to-llvm | FileCheck %s
func @outerproduct(%arg0: vector<2xf32>, %arg1: vector<3xf32>) -> vector<2x3xf32> {
%2 = vector.outerproduct %arg0, %arg1 : vector<2xf32>, vector<3xf32>
@ -46,4 +46,21 @@ func @extract_element_from_vec_3d(%arg0: vector<4x3x16xf32>) -> f32 {
// CHECK: llvm.extractvalue %{{.*}}[0 : i32, 0 : i32] : !llvm<"[4 x [3 x <16 x float>]]">
// CHECK: llvm.mlir.constant(0 : i32) : !llvm.i32
// CHECK: llvm.extractelement %{{.*}}, %{{.*}} : !llvm<"<16 x float>">
// CHECK: llvm.return %{{.*}} : !llvm.float
// CHECK: llvm.return %{{.*}} : !llvm.float
func @vector_type_cast(%arg0: memref<8x8x8xf32>) -> memref<1xvector<8x8x8xf32>> {
%0 = vector.type_cast %arg0: memref<8x8x8xf32>, memref<1xvector<8x8x8xf32>>
return %0 : memref<1xvector<8x8x8xf32>>
}
// CHECK-LABEL: vector_type_cast
// CHECK: llvm.mlir.undef : !llvm<"{ [8 x [8 x <8 x float>]]*, i64, [1 x i64], [1 x i64] }">
// CHECK: %[[ptr:.*]] = llvm.extractvalue {{.*}}[0 : index] : !llvm<"{ float*, i64, [3 x i64], [3 x i64] }">
// CHECK: %[[bit:.*]] = llvm.bitcast %[[ptr]] : !llvm<"float*"> to !llvm<"[8 x [8 x <8 x float>]]*">
// CHECK: llvm.insertvalue %[[bit]], {{.*}}[0 : index] : !llvm<"{ [8 x [8 x <8 x float>]]*, i64, [1 x i64], [1 x i64] }">
// CHECK: llvm.mlir.constant(0 : index
// CHECK: llvm.insertvalue {{.*}}[1 : index] : !llvm<"{ [8 x [8 x <8 x float>]]*, i64, [1 x i64], [1 x i64] }">
// CHECK: llvm.mlir.constant(1 : index
// CHECK: llvm.insertvalue {{.*}}[2, 0] : !llvm<"{ [8 x [8 x <8 x float>]]*, i64, [1 x i64], [1 x i64] }">
// CHECK: llvm.mlir.constant(1 : index
// CHECK: llvm.insertvalue {{.*}}[3, 0] : !llvm<"{ [8 x [8 x <8 x float>]]*, i64, [1 x i64], [1 x i64] }">