forked from OSchip/llvm-project
Don't treat a non-deduced 'auto' type as being type-dependent. Instead, there
are now two distinct canonical 'AutoType's: one is the undeduced 'auto' placeholder type, and the other is a deduced-but-dependent type. All deduced-to-a-non-dependent-type cases are still non-canonical. llvm-svn: 180789
This commit is contained in:
parent
93b2cba03b
commit
27d807cc9c
|
@ -1100,7 +1100,8 @@ public:
|
|||
UnaryTransformType::UTTKind UKind) const;
|
||||
|
||||
/// \brief C++11 deduced auto type.
|
||||
QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto) const;
|
||||
QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
|
||||
bool IsDependent = false) const;
|
||||
|
||||
/// \brief C++11 deduction pattern for 'auto' type.
|
||||
QualType getAutoDeductType() const;
|
||||
|
|
|
@ -1619,6 +1619,10 @@ public:
|
|||
return TypeBits.InstantiationDependent;
|
||||
}
|
||||
|
||||
/// \brief Determine whether this type is an undeduced type, meaning that
|
||||
/// it somehow involves a C++11 'auto' type which has not yet been deduced.
|
||||
bool isUndeducedType() const;
|
||||
|
||||
/// \brief Whether this type is a variably-modified type (C99 6.7.5).
|
||||
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
|
||||
|
||||
|
@ -3554,17 +3558,17 @@ public:
|
|||
|
||||
/// \brief Represents a C++11 auto or C++1y decltype(auto) type.
|
||||
///
|
||||
/// These types are usually a placeholder for a deduced type. However, within
|
||||
/// templates and before the initializer is attached, there is no deduced type
|
||||
/// and an auto type is type-dependent and canonical.
|
||||
/// These types are usually a placeholder for a deduced type. However, before
|
||||
/// the initializer is attached, or if the initializer is type-dependent, there
|
||||
/// is no deduced type and an auto type is canonical. In the latter case, it is
|
||||
/// also a dependent type.
|
||||
class AutoType : public Type, public llvm::FoldingSetNode {
|
||||
AutoType(QualType DeducedType, bool IsDecltypeAuto)
|
||||
AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
|
||||
: Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
|
||||
/*Dependent=*/DeducedType.isNull(),
|
||||
/*InstantiationDependent=*/DeducedType.isNull(),
|
||||
/*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
|
||||
/*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
|
||||
assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
|
||||
"deduced a dependent type for auto");
|
||||
assert((DeducedType.isNull() || !IsDependent) &&
|
||||
"auto deduced to dependent type");
|
||||
AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
|
||||
}
|
||||
|
||||
|
@ -3573,24 +3577,27 @@ class AutoType : public Type, public llvm::FoldingSetNode {
|
|||
public:
|
||||
bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
|
||||
|
||||
bool isSugared() const { return isDeduced(); }
|
||||
bool isSugared() const { return !isCanonicalUnqualified(); }
|
||||
QualType desugar() const { return getCanonicalTypeInternal(); }
|
||||
|
||||
/// \brief Get the type deduced for this auto type, or null if it's either
|
||||
/// not been deduced or was deduced to a dependent type.
|
||||
QualType getDeducedType() const {
|
||||
return isDeduced() ? getCanonicalTypeInternal() : QualType();
|
||||
return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
|
||||
}
|
||||
bool isDeduced() const {
|
||||
return !isDependentType();
|
||||
return !isCanonicalUnqualified() || isDependentType();
|
||||
}
|
||||
|
||||
void Profile(llvm::FoldingSetNodeID &ID) {
|
||||
Profile(ID, getDeducedType(), isDecltypeAuto());
|
||||
Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
|
||||
}
|
||||
|
||||
static void Profile(llvm::FoldingSetNodeID &ID,
|
||||
QualType Deduced, bool IsDecltypeAuto) {
|
||||
static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
|
||||
bool IsDecltypeAuto, bool IsDependent) {
|
||||
ID.AddPointer(Deduced.getAsOpaquePtr());
|
||||
ID.AddBoolean(IsDecltypeAuto);
|
||||
ID.AddBoolean(IsDependent);
|
||||
}
|
||||
|
||||
static bool classof(const Type *T) {
|
||||
|
@ -5033,6 +5040,11 @@ inline bool Type::isBooleanType() const {
|
|||
return false;
|
||||
}
|
||||
|
||||
inline bool Type::isUndeducedType() const {
|
||||
const AutoType *AT = getContainedAutoType();
|
||||
return AT && !AT->isDeduced();
|
||||
}
|
||||
|
||||
/// \brief Determines whether this is a type for which one can define
|
||||
/// an overloaded operator.
|
||||
inline bool Type::isOverloadableType() const {
|
||||
|
|
|
@ -94,7 +94,7 @@ DEPENDENT_TYPE(TemplateTypeParm, Type)
|
|||
NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type)
|
||||
DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type)
|
||||
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type)
|
||||
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Auto, Type)
|
||||
TYPE(Auto, Type)
|
||||
DEPENDENT_TYPE(InjectedClassName, Type)
|
||||
DEPENDENT_TYPE(DependentName, Type)
|
||||
DEPENDENT_TYPE(DependentTemplateSpecialization, Type)
|
||||
|
|
|
@ -1400,6 +1400,7 @@ public:
|
|||
MultiTemplateParamsArg TemplateParamLists);
|
||||
// Returns true if the variable declaration is a redeclaration
|
||||
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
|
||||
void CheckVariableDeclarationType(VarDecl *NewVD);
|
||||
void CheckCompleteVariableDeclaration(VarDecl *var);
|
||||
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
|
||||
void ActOnStartFunctionDeclarator();
|
||||
|
@ -5643,6 +5644,7 @@ public:
|
|||
|
||||
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer,
|
||||
TypeSourceInfo *&Result);
|
||||
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
|
||||
void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
|
||||
|
||||
FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
|
||||
|
|
|
@ -1597,7 +1597,8 @@ ASTContext::getTypeInfoImpl(const Type *T) const {
|
|||
|
||||
case Type::Auto: {
|
||||
const AutoType *A = cast<AutoType>(T);
|
||||
assert(A->isDeduced() && "Cannot request the size of a dependent type");
|
||||
assert(!A->getDeducedType().isNull() &&
|
||||
"cannot request the size of an undeduced or dependent auto type");
|
||||
return getTypeInfo(A->getDeducedType().getTypePtr());
|
||||
}
|
||||
|
||||
|
@ -3564,18 +3565,20 @@ QualType ASTContext::getUnaryTransformType(QualType BaseType,
|
|||
|
||||
/// getAutoType - We only unique auto types after they've been deduced.
|
||||
QualType ASTContext::getAutoType(QualType DeducedType,
|
||||
bool IsDecltypeAuto) const {
|
||||
bool IsDecltypeAuto,
|
||||
bool IsDependent) const {
|
||||
void *InsertPos = 0;
|
||||
if (!DeducedType.isNull()) {
|
||||
// Look in the folding set for an existing type.
|
||||
llvm::FoldingSetNodeID ID;
|
||||
AutoType::Profile(ID, DeducedType, IsDecltypeAuto);
|
||||
AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
|
||||
if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
|
||||
return QualType(AT, 0);
|
||||
}
|
||||
|
||||
AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
|
||||
IsDecltypeAuto);
|
||||
IsDecltypeAuto,
|
||||
IsDependent);
|
||||
Types.push_back(AT);
|
||||
if (InsertPos)
|
||||
AutoTypes.InsertNode(AT, InsertPos);
|
||||
|
@ -5387,6 +5390,11 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
|
|||
// FIXME. We should do a better job than gcc.
|
||||
return;
|
||||
|
||||
case Type::Auto:
|
||||
// We could see an undeduced auto type here during error recovery.
|
||||
// Just ignore it.
|
||||
return;
|
||||
|
||||
#define ABSTRACT_TYPE(KIND, BASE)
|
||||
#define TYPE(KIND, BASE)
|
||||
#define DEPENDENT_TYPE(KIND, BASE) \
|
||||
|
@ -7028,6 +7036,7 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
|
|||
#include "clang/AST/TypeNodes.def"
|
||||
llvm_unreachable("Non-canonical and dependent types shouldn't get here");
|
||||
|
||||
case Type::Auto:
|
||||
case Type::LValueReference:
|
||||
case Type::RValueReference:
|
||||
case Type::MemberPointer:
|
||||
|
|
|
@ -2105,6 +2105,11 @@ static CachedProperties computeCachedProperties(const Type *T) {
|
|||
assert(T->isInstantiationDependentType());
|
||||
return CachedProperties(ExternalLinkage, false);
|
||||
|
||||
case Type::Auto:
|
||||
// Give non-deduced 'auto' types external linkage. We should only see them
|
||||
// here in error recovery.
|
||||
return CachedProperties(ExternalLinkage, false);
|
||||
|
||||
case Type::Builtin:
|
||||
// C++ [basic.link]p8:
|
||||
// A type is said to have linkage if and only if:
|
||||
|
@ -2206,6 +2211,9 @@ static LinkageInfo computeLinkageInfo(const Type *T) {
|
|||
case Type::Builtin:
|
||||
return LinkageInfo::external();
|
||||
|
||||
case Type::Auto:
|
||||
return LinkageInfo::external();
|
||||
|
||||
case Type::Record:
|
||||
case Type::Enum:
|
||||
return cast<TagType>(T)->getDecl()->getLinkageAndVisibility();
|
||||
|
|
|
@ -776,7 +776,7 @@ void TypePrinter::printUnaryTransformAfter(const UnaryTransformType *T,
|
|||
|
||||
void TypePrinter::printAutoBefore(const AutoType *T, raw_ostream &OS) {
|
||||
// If the type has been deduced, do not print 'auto'.
|
||||
if (T->isDeduced()) {
|
||||
if (!T->getDeducedType().isNull()) {
|
||||
printBefore(T->getDeducedType(), OS);
|
||||
} else {
|
||||
OS << (T->isDecltypeAuto() ? "decltype(auto)" : "auto");
|
||||
|
@ -785,7 +785,7 @@ void TypePrinter::printAutoBefore(const AutoType *T, raw_ostream &OS) {
|
|||
}
|
||||
void TypePrinter::printAutoAfter(const AutoType *T, raw_ostream &OS) {
|
||||
// If the type has been deduced, do not print 'auto'.
|
||||
if (T->isDeduced())
|
||||
if (!T->getDeducedType().isNull())
|
||||
printAfter(T->getDeducedType(), OS);
|
||||
}
|
||||
|
||||
|
|
|
@ -412,6 +412,9 @@ void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
|
|||
case Type::RValueReference:
|
||||
llvm_unreachable("References shouldn't get here");
|
||||
|
||||
case Type::Auto:
|
||||
llvm_unreachable("Undeduced auto type shouldn't get here");
|
||||
|
||||
case Type::Builtin:
|
||||
// GCC treats vector and complex types as fundamental types.
|
||||
case Type::Vector:
|
||||
|
@ -619,6 +622,9 @@ llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
|
|||
case Type::RValueReference:
|
||||
llvm_unreachable("References shouldn't get here");
|
||||
|
||||
case Type::Auto:
|
||||
llvm_unreachable("Undeduced auto type shouldn't get here");
|
||||
|
||||
case Type::ConstantArray:
|
||||
case Type::IncompleteArray:
|
||||
case Type::VariableArray:
|
||||
|
|
|
@ -91,6 +91,9 @@ TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
|
|||
#include "clang/AST/TypeNodes.def"
|
||||
llvm_unreachable("non-canonical or dependent type in IR-generation");
|
||||
|
||||
case Type::Auto:
|
||||
llvm_unreachable("undeduced auto type in IR-generation");
|
||||
|
||||
// Various scalar types.
|
||||
case Type::Builtin:
|
||||
case Type::Pointer:
|
||||
|
|
|
@ -392,6 +392,8 @@ llvm::Type *CodeGenTypes::ConvertType(QualType T) {
|
|||
}
|
||||
break;
|
||||
}
|
||||
case Type::Auto:
|
||||
llvm_unreachable("Unexpected undeduced auto type!");
|
||||
case Type::Complex: {
|
||||
llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
|
||||
ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
|
||||
|
|
|
@ -1456,6 +1456,8 @@ bool Parser::ParseCXXCondition(ExprResult &ExprOut,
|
|||
if (!InitExpr.isInvalid())
|
||||
Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
|
||||
DS.containsPlaceholderType());
|
||||
else
|
||||
Actions.ActOnInitializerError(DeclOut);
|
||||
|
||||
// FIXME: Build a reference to this declaration? Convert it to bool?
|
||||
// (This is currently handled by Sema).
|
||||
|
|
|
@ -2798,8 +2798,7 @@ void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
|
|||
|
||||
QualType MergedT;
|
||||
if (getLangOpts().CPlusPlus) {
|
||||
AutoType *AT = New->getType()->getContainedAutoType();
|
||||
if (AT && !AT->isDeduced()) {
|
||||
if (New->getType()->isUndeducedType()) {
|
||||
// We don't know what the new type is until the initializer is attached.
|
||||
return;
|
||||
} else if (Context.hasSameType(New->getType(), Old->getType())) {
|
||||
|
@ -5142,27 +5141,18 @@ static bool mayConflictWithNonVisibleExternC(const T *ND) {
|
|||
return ND->isExternC();
|
||||
}
|
||||
|
||||
/// \brief Perform semantic checking on a newly-created variable
|
||||
/// declaration.
|
||||
///
|
||||
/// This routine performs all of the type-checking required for a
|
||||
/// variable declaration once it has been built. It is used both to
|
||||
/// check variables after they have been parsed and their declarators
|
||||
/// have been translated into a declaration, and to check variables
|
||||
/// that have been instantiated from a template.
|
||||
///
|
||||
/// Sets NewVD->isInvalidDecl() if an error was encountered.
|
||||
///
|
||||
/// Returns true if the variable declaration is a redeclaration.
|
||||
bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
||||
LookupResult &Previous) {
|
||||
void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
|
||||
// If the decl is already known invalid, don't check it.
|
||||
if (NewVD->isInvalidDecl())
|
||||
return false;
|
||||
return;
|
||||
|
||||
TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
|
||||
QualType T = TInfo->getType();
|
||||
|
||||
// Defer checking an 'auto' type until its initializer is attached.
|
||||
if (T->isUndeducedType())
|
||||
return;
|
||||
|
||||
if (T->isObjCObjectType()) {
|
||||
Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
|
||||
<< FixItHint::CreateInsertion(NewVD->getLocation(), "*");
|
||||
|
@ -5177,7 +5167,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
|
||||
Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
return;
|
||||
}
|
||||
|
||||
// OpenCL v1.2 s6.5 - All program scope variables must be declared in the
|
||||
|
@ -5187,7 +5177,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
&& !T->isSamplerT()){
|
||||
Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
return;
|
||||
}
|
||||
|
||||
// OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
|
||||
|
@ -5196,7 +5186,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
&& NewVD->isStaticLocal()) {
|
||||
Diag(NewVD->getLocation(), diag::err_static_function_scope);
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
return;
|
||||
}
|
||||
|
||||
if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
|
||||
|
@ -5237,7 +5227,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
|
||||
<< SizeRange;
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
return;
|
||||
}
|
||||
|
||||
if (FixedTInfo == 0) {
|
||||
|
@ -5246,7 +5236,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
else
|
||||
Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
return;
|
||||
}
|
||||
|
||||
Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
|
||||
|
@ -5254,6 +5244,54 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
NewVD->setTypeSourceInfo(FixedTInfo);
|
||||
}
|
||||
|
||||
if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
|
||||
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
|
||||
<< T;
|
||||
NewVD->setInvalidDecl();
|
||||
return;
|
||||
}
|
||||
|
||||
if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
|
||||
Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
|
||||
NewVD->setInvalidDecl();
|
||||
return;
|
||||
}
|
||||
|
||||
if (isVM && NewVD->hasAttr<BlocksAttr>()) {
|
||||
Diag(NewVD->getLocation(), diag::err_block_on_vm);
|
||||
NewVD->setInvalidDecl();
|
||||
return;
|
||||
}
|
||||
|
||||
if (NewVD->isConstexpr() && !T->isDependentType() &&
|
||||
RequireLiteralType(NewVD->getLocation(), T,
|
||||
diag::err_constexpr_var_non_literal)) {
|
||||
// Can't perform this check until the type is deduced.
|
||||
NewVD->setInvalidDecl();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Perform semantic checking on a newly-created variable
|
||||
/// declaration.
|
||||
///
|
||||
/// This routine performs all of the type-checking required for a
|
||||
/// variable declaration once it has been built. It is used both to
|
||||
/// check variables after they have been parsed and their declarators
|
||||
/// have been translated into a declaration, and to check variables
|
||||
/// that have been instantiated from a template.
|
||||
///
|
||||
/// Sets NewVD->isInvalidDecl() if an error was encountered.
|
||||
///
|
||||
/// Returns true if the variable declaration is a redeclaration.
|
||||
bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
||||
LookupResult &Previous) {
|
||||
CheckVariableDeclarationType(NewVD);
|
||||
|
||||
// If the decl is already known invalid, don't check it.
|
||||
if (NewVD->isInvalidDecl())
|
||||
return false;
|
||||
|
||||
// If we did not find anything by this name, look for a non-visible
|
||||
// extern "C" declaration with the same name.
|
||||
//
|
||||
|
@ -5292,32 +5330,6 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
|
|||
// Filter out any non-conflicting previous declarations.
|
||||
filterNonConflictingPreviousDecls(Context, NewVD, Previous);
|
||||
|
||||
if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
|
||||
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
|
||||
<< T;
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
|
||||
Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (isVM && NewVD->hasAttr<BlocksAttr>()) {
|
||||
Diag(NewVD->getLocation(), diag::err_block_on_vm);
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (NewVD->isConstexpr() && !T->isDependentType() &&
|
||||
RequireLiteralType(NewVD->getLocation(), T,
|
||||
diag::err_constexpr_var_non_literal)) {
|
||||
NewVD->setInvalidDecl();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Previous.empty()) {
|
||||
MergeVarDecl(NewVD, Previous, PreviousWasHidden);
|
||||
return true;
|
||||
|
@ -7284,10 +7296,7 @@ void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
|
|||
ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
|
||||
|
||||
// C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
|
||||
AutoType *Auto = 0;
|
||||
if (TypeMayContainAuto &&
|
||||
(Auto = VDecl->getType()->getContainedAutoType()) &&
|
||||
!Auto->isDeduced()) {
|
||||
if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
|
||||
Expr *DeduceInit = Init;
|
||||
// Initializer could be a C++ direct-initializer. Deduction only works if it
|
||||
// contains exactly one expression.
|
||||
|
@ -7357,6 +7366,11 @@ void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
|
|||
// the previously declared type.
|
||||
if (VarDecl *Old = VDecl->getPreviousDecl())
|
||||
MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
|
||||
|
||||
// Check the deduced type is valid for a variable declaration.
|
||||
CheckVariableDeclarationType(VDecl);
|
||||
if (VDecl->isInvalidDecl())
|
||||
return;
|
||||
}
|
||||
|
||||
if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
|
||||
|
@ -8190,8 +8204,8 @@ Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
|
|||
// Don't reissue diagnostics when instantiating a template.
|
||||
if (AT && D->isInvalidDecl())
|
||||
break;
|
||||
if (AT && AT->isDeduced()) {
|
||||
QualType U = AT->getDeducedType();
|
||||
QualType U = AT ? AT->getDeducedType() : QualType();
|
||||
if (!U.isNull()) {
|
||||
CanQualType UCanon = Context.getCanonicalType(U);
|
||||
if (Deduced.isNull()) {
|
||||
Deduced = U;
|
||||
|
|
|
@ -1118,9 +1118,7 @@ Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
|
|||
HaveCompleteInit = true;
|
||||
|
||||
// C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
|
||||
AutoType *AT = 0;
|
||||
if (TypeMayContainAuto &&
|
||||
(AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
|
||||
if (TypeMayContainAuto && AllocType->isUndeducedType()) {
|
||||
if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
|
||||
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
|
||||
<< AllocType << TypeRange);
|
||||
|
@ -2279,6 +2277,9 @@ Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
|
|||
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
|
||||
SourceLocation StmtLoc,
|
||||
bool ConvertToBoolean) {
|
||||
if (ConditionVar->isInvalidDecl())
|
||||
return ExprError();
|
||||
|
||||
QualType T = ConditionVar->getType();
|
||||
|
||||
// C++ [stmt.select]p2:
|
||||
|
|
|
@ -2087,6 +2087,10 @@ addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
|
|||
case Type::Complex:
|
||||
break;
|
||||
|
||||
// Non-deduced auto types only get here for error cases.
|
||||
case Type::Auto:
|
||||
break;
|
||||
|
||||
// If T is an Objective-C object or interface type, or a pointer to an
|
||||
// object or interface type, the associated namespace is the global
|
||||
// namespace.
|
||||
|
|
|
@ -1923,7 +1923,15 @@ Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
|
|||
StmtResult BeginEndDecl = BeginEnd;
|
||||
ExprResult NotEqExpr = Cond, IncrExpr = Inc;
|
||||
|
||||
if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
|
||||
if (RangeVarType->isDependentType()) {
|
||||
// The range is implicitly used as a placeholder when it is dependent.
|
||||
RangeVar->setUsed();
|
||||
|
||||
// Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
|
||||
// them in properly when we instantiate the loop.
|
||||
if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
|
||||
LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
|
||||
} else if (!BeginEndDecl.get()) {
|
||||
SourceLocation RangeLoc = RangeVar->getLocation();
|
||||
|
||||
const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
|
||||
|
@ -2110,9 +2118,6 @@ Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
|
|||
if (LoopVar->isInvalidDecl())
|
||||
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
|
||||
}
|
||||
} else {
|
||||
// The range is implicitly used as a placeholder when it is dependent.
|
||||
RangeVar->setUsed();
|
||||
}
|
||||
|
||||
// Don't bother to actually allocate the result if we're just trying to
|
||||
|
|
|
@ -3584,8 +3584,12 @@ namespace {
|
|||
NewTL.setNameLoc(TL.getNameLoc());
|
||||
return Result;
|
||||
} else {
|
||||
QualType Result = RebuildAutoType(Replacement,
|
||||
TL.getTypePtr()->isDecltypeAuto());
|
||||
bool Dependent =
|
||||
!Replacement.isNull() && Replacement->isDependentType();
|
||||
QualType Result =
|
||||
SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
|
||||
TL.getTypePtr()->isDecltypeAuto(),
|
||||
Dependent);
|
||||
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
|
||||
NewTL.setNameLoc(TL.getNameLoc());
|
||||
return Result;
|
||||
|
@ -3597,41 +3601,6 @@ namespace {
|
|||
return E;
|
||||
}
|
||||
};
|
||||
|
||||
/// Determine whether the specified type (which contains an 'auto' type
|
||||
/// specifier) is dependent. This is not trivial, because the 'auto' specifier
|
||||
/// itself claims to be type-dependent.
|
||||
bool isDependentAutoType(QualType Ty) {
|
||||
while (1) {
|
||||
QualType Pointee = Ty->getPointeeType();
|
||||
if (!Pointee.isNull()) {
|
||||
Ty = Pointee;
|
||||
} else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
|
||||
if (MPT->getClass()->isDependentType())
|
||||
return true;
|
||||
Ty = MPT->getPointeeType();
|
||||
} else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
|
||||
for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
|
||||
E = FPT->arg_type_end();
|
||||
I != E; ++I)
|
||||
if ((*I)->isDependentType())
|
||||
return true;
|
||||
Ty = FPT->getResultType();
|
||||
} else if (Ty->isDependentSizedArrayType()) {
|
||||
return true;
|
||||
} else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
|
||||
Ty = AT->getElementType();
|
||||
} else if (Ty->getAs<DependentSizedExtVectorType>()) {
|
||||
return true;
|
||||
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
||||
Ty = VT->getElementType();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
|
||||
|
@ -3654,8 +3623,9 @@ Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
|
|||
Init = result.take();
|
||||
}
|
||||
|
||||
if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) {
|
||||
Result = Type;
|
||||
if (Init->isTypeDependent() || Type->getType()->isDependentType()) {
|
||||
Result =
|
||||
SubstituteAutoTransform(*this, Context.DependentTy).TransformType(Type);
|
||||
return DAR_Succeeded;
|
||||
}
|
||||
|
||||
|
@ -3749,6 +3719,10 @@ Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
|
|||
return DAR_Succeeded;
|
||||
}
|
||||
|
||||
QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
|
||||
return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
|
||||
}
|
||||
|
||||
void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
|
||||
if (isa<InitListExpr>(Init))
|
||||
Diag(VDecl->getLocation(),
|
||||
|
|
|
@ -2569,11 +2569,11 @@ static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
|
|||
|
||||
if (const AutoType *AT = T->getContainedAutoType()) {
|
||||
// We've already diagnosed this for decltype(auto).
|
||||
if (!AT->isDecltypeAuto()) {
|
||||
if (!AT->isDecltypeAuto())
|
||||
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
|
||||
<< getPrintableNameForEntity(Name) << T;
|
||||
D.setInvalidType(true);
|
||||
}
|
||||
T = QualType();
|
||||
break;
|
||||
}
|
||||
|
||||
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
|
||||
|
@ -3831,7 +3831,7 @@ static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
|
|||
QualType &type) {
|
||||
bool NonObjCPointer = false;
|
||||
|
||||
if (!type->isDependentType()) {
|
||||
if (!type->isDependentType() && !type->isUndeducedType()) {
|
||||
if (const PointerType *ptr = type->getAs<PointerType>()) {
|
||||
QualType pointee = ptr->getPointeeType();
|
||||
if (pointee->isObjCRetainableType() || pointee->isPointerType())
|
||||
|
|
|
@ -764,6 +764,9 @@ public:
|
|||
///
|
||||
/// By default, builds a new AutoType with the given deduced type.
|
||||
QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
|
||||
// Note, IsDependent is always false here: we implicitly convert an 'auto'
|
||||
// which has been deduced to a dependent type into an undeduced 'auto', so
|
||||
// that we'll retry deduction after the transformation.
|
||||
return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto);
|
||||
}
|
||||
|
||||
|
@ -4500,7 +4503,8 @@ QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
|
|||
}
|
||||
|
||||
QualType Result = TL.getType();
|
||||
if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced) {
|
||||
if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
|
||||
T->isDependentType()) {
|
||||
Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
|
||||
if (Result.isNull())
|
||||
return QualType();
|
||||
|
|
|
@ -4641,7 +4641,8 @@ QualType ASTReader::readTypeRecord(unsigned Index) {
|
|||
case TYPE_AUTO: {
|
||||
QualType Deduced = readType(*Loc.F, Record, Idx);
|
||||
bool IsDecltypeAuto = Record[Idx++];
|
||||
return Context.getAutoType(Deduced, IsDecltypeAuto);
|
||||
bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
|
||||
return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent);
|
||||
}
|
||||
|
||||
case TYPE_RECORD: {
|
||||
|
|
|
@ -246,6 +246,8 @@ void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) {
|
|||
void ASTTypeWriter::VisitAutoType(const AutoType *T) {
|
||||
Writer.AddTypeRef(T->getDeducedType(), Record);
|
||||
Record.push_back(T->isDecltypeAuto());
|
||||
if (T->getDeducedType().isNull())
|
||||
Record.push_back(T->isDependentType());
|
||||
Code = TYPE_AUTO;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
// RUN: %clang_cc1 -fsyntax-only -verify %s
|
||||
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
|
||||
|
||||
void test() {
|
||||
int x;
|
||||
|
@ -6,7 +6,7 @@ void test() {
|
|||
if (int x=0) ++x;
|
||||
|
||||
typedef int arr[10];
|
||||
while (arr x=0) ; // expected-error {{an array type is not allowed here}} expected-error {{array initializer must be an initializer list}}
|
||||
while (arr x={0}) ; // expected-error {{an array type is not allowed here}}
|
||||
while (int f()=0) ; // expected-error {{a function type is not allowed here}}
|
||||
|
||||
struct S {} s;
|
||||
|
@ -19,9 +19,7 @@ void test() {
|
|||
while (struct NewS *x=0) ;
|
||||
while (struct S {} *x=0) ; // expected-error {{types may not be defined in conditions}}
|
||||
while (struct {} *x=0) ; // expected-error {{types may not be defined in conditions}}
|
||||
switch (enum {E} x=0) ; // expected-error {{types may not be defined in conditions}} \
|
||||
// expected-warning{{enumeration value 'E' not handled in switch}} expected-warning {{switch statement has empty body}} \
|
||||
// expected-note{{put the semicolon on a separate line}}
|
||||
switch (enum {E} x=0) ; // expected-error {{types may not be defined in conditions}}
|
||||
|
||||
if (int x=0) { // expected-note 2 {{previous definition is here}}
|
||||
int x; // expected-error {{redefinition of 'x'}}
|
||||
|
|
|
@ -70,7 +70,9 @@ namespace b6981007 {
|
|||
for (auto x : s) {
|
||||
// We used to attempt to evaluate the initializer of this variable,
|
||||
// and crash because it has an undeduced type.
|
||||
const int &n(x);
|
||||
// FIXME: We should set the loop variable to be invalid if we can't build
|
||||
// the loop, to suppress this follow-on error.
|
||||
const int &n(x); // expected-error {{could not bind to an lvalue of type 'auto'}}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -7,7 +7,7 @@ template <typename T>
|
|||
void doIt() {
|
||||
int a; // expected-warning {{unused variable 'a'}}
|
||||
|
||||
for (auto& e : elements)
|
||||
for (auto& e : elements) // expected-warning {{unused variable 'e'}}
|
||||
;
|
||||
}
|
||||
|
||||
|
@ -17,5 +17,5 @@ template <typename T>
|
|||
|
||||
int main(int, char**) {
|
||||
Vector<int> vector;
|
||||
vector.doIt();
|
||||
vector.doIt(); // expected-note {{here}}
|
||||
}
|
||||
|
|
|
@ -264,7 +264,7 @@ namespace PR10053 {
|
|||
}
|
||||
|
||||
namespace PR10187 {
|
||||
namespace A {
|
||||
namespace A1 {
|
||||
template<typename T>
|
||||
struct S {
|
||||
void f() {
|
||||
|
@ -278,6 +278,25 @@ namespace PR10187 {
|
|||
}
|
||||
}
|
||||
|
||||
namespace A2 {
|
||||
template<typename T>
|
||||
struct S {
|
||||
void f() {
|
||||
for (auto &a : e)
|
||||
__range(a); // expected-error {{undeclared identifier '__range'}}
|
||||
}
|
||||
T e[10];
|
||||
};
|
||||
void g() {
|
||||
S<int>().f(); // expected-note {{here}}
|
||||
}
|
||||
struct X {};
|
||||
void __range(X);
|
||||
void h() {
|
||||
S<X>().f();
|
||||
}
|
||||
}
|
||||
|
||||
namespace B {
|
||||
template<typename T> void g(); // expected-note {{not viable}}
|
||||
template<typename T> void f() {
|
||||
|
|
Loading…
Reference in New Issue