Don't treat a non-deduced 'auto' type as being type-dependent. Instead, there

are now two distinct canonical 'AutoType's: one is the undeduced 'auto'
placeholder type, and the other is a deduced-but-dependent type. All
deduced-to-a-non-dependent-type cases are still non-canonical.

llvm-svn: 180789
This commit is contained in:
Richard Smith 2013-04-30 13:56:41 +00:00
parent 93b2cba03b
commit 27d807cc9c
24 changed files with 206 additions and 137 deletions

View File

@ -1100,7 +1100,8 @@ public:
UnaryTransformType::UTTKind UKind) const; UnaryTransformType::UTTKind UKind) const;
/// \brief C++11 deduced auto type. /// \brief C++11 deduced auto type.
QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto) const; QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
bool IsDependent = false) const;
/// \brief C++11 deduction pattern for 'auto' type. /// \brief C++11 deduction pattern for 'auto' type.
QualType getAutoDeductType() const; QualType getAutoDeductType() const;

View File

@ -1619,6 +1619,10 @@ public:
return TypeBits.InstantiationDependent; return TypeBits.InstantiationDependent;
} }
/// \brief Determine whether this type is an undeduced type, meaning that
/// it somehow involves a C++11 'auto' type which has not yet been deduced.
bool isUndeducedType() const;
/// \brief Whether this type is a variably-modified type (C99 6.7.5). /// \brief Whether this type is a variably-modified type (C99 6.7.5).
bool isVariablyModifiedType() const { return TypeBits.VariablyModified; } bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
@ -3554,17 +3558,17 @@ public:
/// \brief Represents a C++11 auto or C++1y decltype(auto) type. /// \brief Represents a C++11 auto or C++1y decltype(auto) type.
/// ///
/// These types are usually a placeholder for a deduced type. However, within /// These types are usually a placeholder for a deduced type. However, before
/// templates and before the initializer is attached, there is no deduced type /// the initializer is attached, or if the initializer is type-dependent, there
/// and an auto type is type-dependent and canonical. /// is no deduced type and an auto type is canonical. In the latter case, it is
/// also a dependent type.
class AutoType : public Type, public llvm::FoldingSetNode { class AutoType : public Type, public llvm::FoldingSetNode {
AutoType(QualType DeducedType, bool IsDecltypeAuto) AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
: Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType, : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
/*Dependent=*/DeducedType.isNull(), /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
/*InstantiationDependent=*/DeducedType.isNull(),
/*VariablyModified=*/false, /*ContainsParameterPack=*/false) { /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
assert((DeducedType.isNull() || !DeducedType->isDependentType()) && assert((DeducedType.isNull() || !IsDependent) &&
"deduced a dependent type for auto"); "auto deduced to dependent type");
AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto; AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
} }
@ -3573,24 +3577,27 @@ class AutoType : public Type, public llvm::FoldingSetNode {
public: public:
bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; } bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
bool isSugared() const { return isDeduced(); } bool isSugared() const { return !isCanonicalUnqualified(); }
QualType desugar() const { return getCanonicalTypeInternal(); } QualType desugar() const { return getCanonicalTypeInternal(); }
/// \brief Get the type deduced for this auto type, or null if it's either
/// not been deduced or was deduced to a dependent type.
QualType getDeducedType() const { QualType getDeducedType() const {
return isDeduced() ? getCanonicalTypeInternal() : QualType(); return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
} }
bool isDeduced() const { bool isDeduced() const {
return !isDependentType(); return !isCanonicalUnqualified() || isDependentType();
} }
void Profile(llvm::FoldingSetNodeID &ID) { void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDeducedType(), isDecltypeAuto()); Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
} }
static void Profile(llvm::FoldingSetNodeID &ID, static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
QualType Deduced, bool IsDecltypeAuto) { bool IsDecltypeAuto, bool IsDependent) {
ID.AddPointer(Deduced.getAsOpaquePtr()); ID.AddPointer(Deduced.getAsOpaquePtr());
ID.AddBoolean(IsDecltypeAuto); ID.AddBoolean(IsDecltypeAuto);
ID.AddBoolean(IsDependent);
} }
static bool classof(const Type *T) { static bool classof(const Type *T) {
@ -5033,6 +5040,11 @@ inline bool Type::isBooleanType() const {
return false; return false;
} }
inline bool Type::isUndeducedType() const {
const AutoType *AT = getContainedAutoType();
return AT && !AT->isDeduced();
}
/// \brief Determines whether this is a type for which one can define /// \brief Determines whether this is a type for which one can define
/// an overloaded operator. /// an overloaded operator.
inline bool Type::isOverloadableType() const { inline bool Type::isOverloadableType() const {

View File

@ -94,7 +94,7 @@ DEPENDENT_TYPE(TemplateTypeParm, Type)
NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type) NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type)
DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type) DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type) NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type)
NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Auto, Type) TYPE(Auto, Type)
DEPENDENT_TYPE(InjectedClassName, Type) DEPENDENT_TYPE(InjectedClassName, Type)
DEPENDENT_TYPE(DependentName, Type) DEPENDENT_TYPE(DependentName, Type)
DEPENDENT_TYPE(DependentTemplateSpecialization, Type) DEPENDENT_TYPE(DependentTemplateSpecialization, Type)

View File

@ -1400,6 +1400,7 @@ public:
MultiTemplateParamsArg TemplateParamLists); MultiTemplateParamsArg TemplateParamLists);
// Returns true if the variable declaration is a redeclaration // Returns true if the variable declaration is a redeclaration
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous); bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
void CheckVariableDeclarationType(VarDecl *NewVD);
void CheckCompleteVariableDeclaration(VarDecl *var); void CheckCompleteVariableDeclaration(VarDecl *var);
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D); void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
void ActOnStartFunctionDeclarator(); void ActOnStartFunctionDeclarator();
@ -5643,6 +5644,7 @@ public:
DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer,
TypeSourceInfo *&Result); TypeSourceInfo *&Result);
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init); void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,

View File

@ -1597,7 +1597,8 @@ ASTContext::getTypeInfoImpl(const Type *T) const {
case Type::Auto: { case Type::Auto: {
const AutoType *A = cast<AutoType>(T); const AutoType *A = cast<AutoType>(T);
assert(A->isDeduced() && "Cannot request the size of a dependent type"); assert(!A->getDeducedType().isNull() &&
"cannot request the size of an undeduced or dependent auto type");
return getTypeInfo(A->getDeducedType().getTypePtr()); return getTypeInfo(A->getDeducedType().getTypePtr());
} }
@ -3564,18 +3565,20 @@ QualType ASTContext::getUnaryTransformType(QualType BaseType,
/// getAutoType - We only unique auto types after they've been deduced. /// getAutoType - We only unique auto types after they've been deduced.
QualType ASTContext::getAutoType(QualType DeducedType, QualType ASTContext::getAutoType(QualType DeducedType,
bool IsDecltypeAuto) const { bool IsDecltypeAuto,
bool IsDependent) const {
void *InsertPos = 0; void *InsertPos = 0;
if (!DeducedType.isNull()) { if (!DeducedType.isNull()) {
// Look in the folding set for an existing type. // Look in the folding set for an existing type.
llvm::FoldingSetNodeID ID; llvm::FoldingSetNodeID ID;
AutoType::Profile(ID, DeducedType, IsDecltypeAuto); AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(AT, 0); return QualType(AT, 0);
} }
AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
IsDecltypeAuto); IsDecltypeAuto,
IsDependent);
Types.push_back(AT); Types.push_back(AT);
if (InsertPos) if (InsertPos)
AutoTypes.InsertNode(AT, InsertPos); AutoTypes.InsertNode(AT, InsertPos);
@ -5387,6 +5390,11 @@ void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
// FIXME. We should do a better job than gcc. // FIXME. We should do a better job than gcc.
return; return;
case Type::Auto:
// We could see an undeduced auto type here during error recovery.
// Just ignore it.
return;
#define ABSTRACT_TYPE(KIND, BASE) #define ABSTRACT_TYPE(KIND, BASE)
#define TYPE(KIND, BASE) #define TYPE(KIND, BASE)
#define DEPENDENT_TYPE(KIND, BASE) \ #define DEPENDENT_TYPE(KIND, BASE) \
@ -7028,6 +7036,7 @@ QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
#include "clang/AST/TypeNodes.def" #include "clang/AST/TypeNodes.def"
llvm_unreachable("Non-canonical and dependent types shouldn't get here"); llvm_unreachable("Non-canonical and dependent types shouldn't get here");
case Type::Auto:
case Type::LValueReference: case Type::LValueReference:
case Type::RValueReference: case Type::RValueReference:
case Type::MemberPointer: case Type::MemberPointer:

View File

@ -2105,6 +2105,11 @@ static CachedProperties computeCachedProperties(const Type *T) {
assert(T->isInstantiationDependentType()); assert(T->isInstantiationDependentType());
return CachedProperties(ExternalLinkage, false); return CachedProperties(ExternalLinkage, false);
case Type::Auto:
// Give non-deduced 'auto' types external linkage. We should only see them
// here in error recovery.
return CachedProperties(ExternalLinkage, false);
case Type::Builtin: case Type::Builtin:
// C++ [basic.link]p8: // C++ [basic.link]p8:
// A type is said to have linkage if and only if: // A type is said to have linkage if and only if:
@ -2206,6 +2211,9 @@ static LinkageInfo computeLinkageInfo(const Type *T) {
case Type::Builtin: case Type::Builtin:
return LinkageInfo::external(); return LinkageInfo::external();
case Type::Auto:
return LinkageInfo::external();
case Type::Record: case Type::Record:
case Type::Enum: case Type::Enum:
return cast<TagType>(T)->getDecl()->getLinkageAndVisibility(); return cast<TagType>(T)->getDecl()->getLinkageAndVisibility();

View File

@ -776,7 +776,7 @@ void TypePrinter::printUnaryTransformAfter(const UnaryTransformType *T,
void TypePrinter::printAutoBefore(const AutoType *T, raw_ostream &OS) { void TypePrinter::printAutoBefore(const AutoType *T, raw_ostream &OS) {
// If the type has been deduced, do not print 'auto'. // If the type has been deduced, do not print 'auto'.
if (T->isDeduced()) { if (!T->getDeducedType().isNull()) {
printBefore(T->getDeducedType(), OS); printBefore(T->getDeducedType(), OS);
} else { } else {
OS << (T->isDecltypeAuto() ? "decltype(auto)" : "auto"); OS << (T->isDecltypeAuto() ? "decltype(auto)" : "auto");
@ -785,7 +785,7 @@ void TypePrinter::printAutoBefore(const AutoType *T, raw_ostream &OS) {
} }
void TypePrinter::printAutoAfter(const AutoType *T, raw_ostream &OS) { void TypePrinter::printAutoAfter(const AutoType *T, raw_ostream &OS) {
// If the type has been deduced, do not print 'auto'. // If the type has been deduced, do not print 'auto'.
if (T->isDeduced()) if (!T->getDeducedType().isNull())
printAfter(T->getDeducedType(), OS); printAfter(T->getDeducedType(), OS);
} }

View File

@ -412,6 +412,9 @@ void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
case Type::RValueReference: case Type::RValueReference:
llvm_unreachable("References shouldn't get here"); llvm_unreachable("References shouldn't get here");
case Type::Auto:
llvm_unreachable("Undeduced auto type shouldn't get here");
case Type::Builtin: case Type::Builtin:
// GCC treats vector and complex types as fundamental types. // GCC treats vector and complex types as fundamental types.
case Type::Vector: case Type::Vector:
@ -619,6 +622,9 @@ llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
case Type::RValueReference: case Type::RValueReference:
llvm_unreachable("References shouldn't get here"); llvm_unreachable("References shouldn't get here");
case Type::Auto:
llvm_unreachable("Undeduced auto type shouldn't get here");
case Type::ConstantArray: case Type::ConstantArray:
case Type::IncompleteArray: case Type::IncompleteArray:
case Type::VariableArray: case Type::VariableArray:

View File

@ -91,6 +91,9 @@ TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
#include "clang/AST/TypeNodes.def" #include "clang/AST/TypeNodes.def"
llvm_unreachable("non-canonical or dependent type in IR-generation"); llvm_unreachable("non-canonical or dependent type in IR-generation");
case Type::Auto:
llvm_unreachable("undeduced auto type in IR-generation");
// Various scalar types. // Various scalar types.
case Type::Builtin: case Type::Builtin:
case Type::Pointer: case Type::Pointer:

View File

@ -392,6 +392,8 @@ llvm::Type *CodeGenTypes::ConvertType(QualType T) {
} }
break; break;
} }
case Type::Auto:
llvm_unreachable("Unexpected undeduced auto type!");
case Type::Complex: { case Type::Complex: {
llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
ResultType = llvm::StructType::get(EltTy, EltTy, NULL); ResultType = llvm::StructType::get(EltTy, EltTy, NULL);

View File

@ -1456,6 +1456,8 @@ bool Parser::ParseCXXCondition(ExprResult &ExprOut,
if (!InitExpr.isInvalid()) if (!InitExpr.isInvalid())
Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization, Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
DS.containsPlaceholderType()); DS.containsPlaceholderType());
else
Actions.ActOnInitializerError(DeclOut);
// FIXME: Build a reference to this declaration? Convert it to bool? // FIXME: Build a reference to this declaration? Convert it to bool?
// (This is currently handled by Sema). // (This is currently handled by Sema).

View File

@ -2798,8 +2798,7 @@ void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
QualType MergedT; QualType MergedT;
if (getLangOpts().CPlusPlus) { if (getLangOpts().CPlusPlus) {
AutoType *AT = New->getType()->getContainedAutoType(); if (New->getType()->isUndeducedType()) {
if (AT && !AT->isDeduced()) {
// We don't know what the new type is until the initializer is attached. // We don't know what the new type is until the initializer is attached.
return; return;
} else if (Context.hasSameType(New->getType(), Old->getType())) { } else if (Context.hasSameType(New->getType(), Old->getType())) {
@ -5142,27 +5141,18 @@ static bool mayConflictWithNonVisibleExternC(const T *ND) {
return ND->isExternC(); return ND->isExternC();
} }
/// \brief Perform semantic checking on a newly-created variable void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
/// declaration.
///
/// This routine performs all of the type-checking required for a
/// variable declaration once it has been built. It is used both to
/// check variables after they have been parsed and their declarators
/// have been translated into a declaration, and to check variables
/// that have been instantiated from a template.
///
/// Sets NewVD->isInvalidDecl() if an error was encountered.
///
/// Returns true if the variable declaration is a redeclaration.
bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
LookupResult &Previous) {
// If the decl is already known invalid, don't check it. // If the decl is already known invalid, don't check it.
if (NewVD->isInvalidDecl()) if (NewVD->isInvalidDecl())
return false; return;
TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo(); TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
QualType T = TInfo->getType(); QualType T = TInfo->getType();
// Defer checking an 'auto' type until its initializer is attached.
if (T->isUndeducedType())
return;
if (T->isObjCObjectType()) { if (T->isObjCObjectType()) {
Diag(NewVD->getLocation(), diag::err_statically_allocated_object) Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
<< FixItHint::CreateInsertion(NewVD->getLocation(), "*"); << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
@ -5177,7 +5167,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) { if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl); Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
NewVD->setInvalidDecl(); NewVD->setInvalidDecl();
return false; return;
} }
// OpenCL v1.2 s6.5 - All program scope variables must be declared in the // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
@ -5187,7 +5177,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
&& !T->isSamplerT()){ && !T->isSamplerT()){
Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space); Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
NewVD->setInvalidDecl(); NewVD->setInvalidDecl();
return false; return;
} }
// OpenCL v1.2 s6.8 -- The static qualifier is valid only in program // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
@ -5196,7 +5186,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
&& NewVD->isStaticLocal()) { && NewVD->isStaticLocal()) {
Diag(NewVD->getLocation(), diag::err_static_function_scope); Diag(NewVD->getLocation(), diag::err_static_function_scope);
NewVD->setInvalidDecl(); NewVD->setInvalidDecl();
return false; return;
} }
if (NewVD->hasLocalStorage() && T.isObjCGCWeak() if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
@ -5237,7 +5227,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
<< SizeRange; << SizeRange;
NewVD->setInvalidDecl(); NewVD->setInvalidDecl();
return false; return;
} }
if (FixedTInfo == 0) { if (FixedTInfo == 0) {
@ -5246,7 +5236,7 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
else else
Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
NewVD->setInvalidDecl(); NewVD->setInvalidDecl();
return false; return;
} }
Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
@ -5254,6 +5244,54 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
NewVD->setTypeSourceInfo(FixedTInfo); NewVD->setTypeSourceInfo(FixedTInfo);
} }
if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
<< T;
NewVD->setInvalidDecl();
return;
}
if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
NewVD->setInvalidDecl();
return;
}
if (isVM && NewVD->hasAttr<BlocksAttr>()) {
Diag(NewVD->getLocation(), diag::err_block_on_vm);
NewVD->setInvalidDecl();
return;
}
if (NewVD->isConstexpr() && !T->isDependentType() &&
RequireLiteralType(NewVD->getLocation(), T,
diag::err_constexpr_var_non_literal)) {
// Can't perform this check until the type is deduced.
NewVD->setInvalidDecl();
return;
}
}
/// \brief Perform semantic checking on a newly-created variable
/// declaration.
///
/// This routine performs all of the type-checking required for a
/// variable declaration once it has been built. It is used both to
/// check variables after they have been parsed and their declarators
/// have been translated into a declaration, and to check variables
/// that have been instantiated from a template.
///
/// Sets NewVD->isInvalidDecl() if an error was encountered.
///
/// Returns true if the variable declaration is a redeclaration.
bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
LookupResult &Previous) {
CheckVariableDeclarationType(NewVD);
// If the decl is already known invalid, don't check it.
if (NewVD->isInvalidDecl())
return false;
// If we did not find anything by this name, look for a non-visible // If we did not find anything by this name, look for a non-visible
// extern "C" declaration with the same name. // extern "C" declaration with the same name.
// //
@ -5292,32 +5330,6 @@ bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
// Filter out any non-conflicting previous declarations. // Filter out any non-conflicting previous declarations.
filterNonConflictingPreviousDecls(Context, NewVD, Previous); filterNonConflictingPreviousDecls(Context, NewVD, Previous);
if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
<< T;
NewVD->setInvalidDecl();
return false;
}
if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
NewVD->setInvalidDecl();
return false;
}
if (isVM && NewVD->hasAttr<BlocksAttr>()) {
Diag(NewVD->getLocation(), diag::err_block_on_vm);
NewVD->setInvalidDecl();
return false;
}
if (NewVD->isConstexpr() && !T->isDependentType() &&
RequireLiteralType(NewVD->getLocation(), T,
diag::err_constexpr_var_non_literal)) {
NewVD->setInvalidDecl();
return false;
}
if (!Previous.empty()) { if (!Previous.empty()) {
MergeVarDecl(NewVD, Previous, PreviousWasHidden); MergeVarDecl(NewVD, Previous, PreviousWasHidden);
return true; return true;
@ -7284,10 +7296,7 @@ void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
// C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
AutoType *Auto = 0; if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
if (TypeMayContainAuto &&
(Auto = VDecl->getType()->getContainedAutoType()) &&
!Auto->isDeduced()) {
Expr *DeduceInit = Init; Expr *DeduceInit = Init;
// Initializer could be a C++ direct-initializer. Deduction only works if it // Initializer could be a C++ direct-initializer. Deduction only works if it
// contains exactly one expression. // contains exactly one expression.
@ -7357,6 +7366,11 @@ void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
// the previously declared type. // the previously declared type.
if (VarDecl *Old = VDecl->getPreviousDecl()) if (VarDecl *Old = VDecl->getPreviousDecl())
MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false); MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
// Check the deduced type is valid for a variable declaration.
CheckVariableDeclarationType(VDecl);
if (VDecl->isInvalidDecl())
return;
} }
if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
@ -8190,8 +8204,8 @@ Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
// Don't reissue diagnostics when instantiating a template. // Don't reissue diagnostics when instantiating a template.
if (AT && D->isInvalidDecl()) if (AT && D->isInvalidDecl())
break; break;
if (AT && AT->isDeduced()) { QualType U = AT ? AT->getDeducedType() : QualType();
QualType U = AT->getDeducedType(); if (!U.isNull()) {
CanQualType UCanon = Context.getCanonicalType(U); CanQualType UCanon = Context.getCanonicalType(U);
if (Deduced.isNull()) { if (Deduced.isNull()) {
Deduced = U; Deduced = U;

View File

@ -1118,9 +1118,7 @@ Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
HaveCompleteInit = true; HaveCompleteInit = true;
// C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
AutoType *AT = 0; if (TypeMayContainAuto && AllocType->isUndeducedType()) {
if (TypeMayContainAuto &&
(AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
if (initStyle == CXXNewExpr::NoInit || NumInits == 0) if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
<< AllocType << TypeRange); << AllocType << TypeRange);
@ -2279,6 +2277,9 @@ Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc, SourceLocation StmtLoc,
bool ConvertToBoolean) { bool ConvertToBoolean) {
if (ConditionVar->isInvalidDecl())
return ExprError();
QualType T = ConditionVar->getType(); QualType T = ConditionVar->getType();
// C++ [stmt.select]p2: // C++ [stmt.select]p2:

View File

@ -2087,6 +2087,10 @@ addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
case Type::Complex: case Type::Complex:
break; break;
// Non-deduced auto types only get here for error cases.
case Type::Auto:
break;
// If T is an Objective-C object or interface type, or a pointer to an // If T is an Objective-C object or interface type, or a pointer to an
// object or interface type, the associated namespace is the global // object or interface type, the associated namespace is the global
// namespace. // namespace.

View File

@ -1923,7 +1923,15 @@ Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
StmtResult BeginEndDecl = BeginEnd; StmtResult BeginEndDecl = BeginEnd;
ExprResult NotEqExpr = Cond, IncrExpr = Inc; ExprResult NotEqExpr = Cond, IncrExpr = Inc;
if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) { if (RangeVarType->isDependentType()) {
// The range is implicitly used as a placeholder when it is dependent.
RangeVar->setUsed();
// Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
// them in properly when we instantiate the loop.
if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
} else if (!BeginEndDecl.get()) {
SourceLocation RangeLoc = RangeVar->getLocation(); SourceLocation RangeLoc = RangeVar->getLocation();
const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
@ -2110,9 +2118,6 @@ Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
if (LoopVar->isInvalidDecl()) if (LoopVar->isInvalidDecl())
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
} }
} else {
// The range is implicitly used as a placeholder when it is dependent.
RangeVar->setUsed();
} }
// Don't bother to actually allocate the result if we're just trying to // Don't bother to actually allocate the result if we're just trying to

View File

@ -3584,8 +3584,12 @@ namespace {
NewTL.setNameLoc(TL.getNameLoc()); NewTL.setNameLoc(TL.getNameLoc());
return Result; return Result;
} else { } else {
QualType Result = RebuildAutoType(Replacement, bool Dependent =
TL.getTypePtr()->isDecltypeAuto()); !Replacement.isNull() && Replacement->isDependentType();
QualType Result =
SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
TL.getTypePtr()->isDecltypeAuto(),
Dependent);
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc()); NewTL.setNameLoc(TL.getNameLoc());
return Result; return Result;
@ -3597,41 +3601,6 @@ namespace {
return E; return E;
} }
}; };
/// Determine whether the specified type (which contains an 'auto' type
/// specifier) is dependent. This is not trivial, because the 'auto' specifier
/// itself claims to be type-dependent.
bool isDependentAutoType(QualType Ty) {
while (1) {
QualType Pointee = Ty->getPointeeType();
if (!Pointee.isNull()) {
Ty = Pointee;
} else if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()){
if (MPT->getClass()->isDependentType())
return true;
Ty = MPT->getPointeeType();
} else if (const FunctionProtoType *FPT = Ty->getAs<FunctionProtoType>()){
for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
E = FPT->arg_type_end();
I != E; ++I)
if ((*I)->isDependentType())
return true;
Ty = FPT->getResultType();
} else if (Ty->isDependentSizedArrayType()) {
return true;
} else if (const ArrayType *AT = Ty->getAsArrayTypeUnsafe()) {
Ty = AT->getElementType();
} else if (Ty->getAs<DependentSizedExtVectorType>()) {
return true;
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
Ty = VT->getElementType();
} else {
break;
}
}
assert(Ty->getAs<AutoType>() && "didn't find 'auto' in auto type");
return false;
}
} }
/// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6) /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
@ -3654,8 +3623,9 @@ Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
Init = result.take(); Init = result.take();
} }
if (Init->isTypeDependent() || isDependentAutoType(Type->getType())) { if (Init->isTypeDependent() || Type->getType()->isDependentType()) {
Result = Type; Result =
SubstituteAutoTransform(*this, Context.DependentTy).TransformType(Type);
return DAR_Succeeded; return DAR_Succeeded;
} }
@ -3749,6 +3719,10 @@ Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init,
return DAR_Succeeded; return DAR_Succeeded;
} }
QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
}
void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
if (isa<InitListExpr>(Init)) if (isa<InitListExpr>(Init))
Diag(VDecl->getLocation(), Diag(VDecl->getLocation(),

View File

@ -2569,11 +2569,11 @@ static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
if (const AutoType *AT = T->getContainedAutoType()) { if (const AutoType *AT = T->getContainedAutoType()) {
// We've already diagnosed this for decltype(auto). // We've already diagnosed this for decltype(auto).
if (!AT->isDecltypeAuto()) { if (!AT->isDecltypeAuto())
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto) S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
<< getPrintableNameForEntity(Name) << T; << getPrintableNameForEntity(Name) << T;
D.setInvalidType(true); T = QualType();
} break;
} }
T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals, T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
@ -3831,7 +3831,7 @@ static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
QualType &type) { QualType &type) {
bool NonObjCPointer = false; bool NonObjCPointer = false;
if (!type->isDependentType()) { if (!type->isDependentType() && !type->isUndeducedType()) {
if (const PointerType *ptr = type->getAs<PointerType>()) { if (const PointerType *ptr = type->getAs<PointerType>()) {
QualType pointee = ptr->getPointeeType(); QualType pointee = ptr->getPointeeType();
if (pointee->isObjCRetainableType() || pointee->isPointerType()) if (pointee->isObjCRetainableType() || pointee->isPointerType())

View File

@ -764,6 +764,9 @@ public:
/// ///
/// By default, builds a new AutoType with the given deduced type. /// By default, builds a new AutoType with the given deduced type.
QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) { QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) {
// Note, IsDependent is always false here: we implicitly convert an 'auto'
// which has been deduced to a dependent type into an undeduced 'auto', so
// that we'll retry deduction after the transformation.
return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto); return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto);
} }
@ -4500,7 +4503,8 @@ QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
} }
QualType Result = TL.getType(); QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced) { if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
T->isDependentType()) {
Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto()); Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto());
if (Result.isNull()) if (Result.isNull())
return QualType(); return QualType();

View File

@ -4641,7 +4641,8 @@ QualType ASTReader::readTypeRecord(unsigned Index) {
case TYPE_AUTO: { case TYPE_AUTO: {
QualType Deduced = readType(*Loc.F, Record, Idx); QualType Deduced = readType(*Loc.F, Record, Idx);
bool IsDecltypeAuto = Record[Idx++]; bool IsDecltypeAuto = Record[Idx++];
return Context.getAutoType(Deduced, IsDecltypeAuto); bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent);
} }
case TYPE_RECORD: { case TYPE_RECORD: {

View File

@ -246,6 +246,8 @@ void ASTTypeWriter::VisitUnaryTransformType(const UnaryTransformType *T) {
void ASTTypeWriter::VisitAutoType(const AutoType *T) { void ASTTypeWriter::VisitAutoType(const AutoType *T) {
Writer.AddTypeRef(T->getDeducedType(), Record); Writer.AddTypeRef(T->getDeducedType(), Record);
Record.push_back(T->isDecltypeAuto()); Record.push_back(T->isDecltypeAuto());
if (T->getDeducedType().isNull())
Record.push_back(T->isDependentType());
Code = TYPE_AUTO; Code = TYPE_AUTO;
} }

View File

@ -1,4 +1,4 @@
// RUN: %clang_cc1 -fsyntax-only -verify %s // RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
void test() { void test() {
int x; int x;
@ -6,7 +6,7 @@ void test() {
if (int x=0) ++x; if (int x=0) ++x;
typedef int arr[10]; typedef int arr[10];
while (arr x=0) ; // expected-error {{an array type is not allowed here}} expected-error {{array initializer must be an initializer list}} while (arr x={0}) ; // expected-error {{an array type is not allowed here}}
while (int f()=0) ; // expected-error {{a function type is not allowed here}} while (int f()=0) ; // expected-error {{a function type is not allowed here}}
struct S {} s; struct S {} s;
@ -19,9 +19,7 @@ void test() {
while (struct NewS *x=0) ; while (struct NewS *x=0) ;
while (struct S {} *x=0) ; // expected-error {{types may not be defined in conditions}} while (struct S {} *x=0) ; // expected-error {{types may not be defined in conditions}}
while (struct {} *x=0) ; // expected-error {{types may not be defined in conditions}} while (struct {} *x=0) ; // expected-error {{types may not be defined in conditions}}
switch (enum {E} x=0) ; // expected-error {{types may not be defined in conditions}} \ switch (enum {E} x=0) ; // expected-error {{types may not be defined in conditions}}
// expected-warning{{enumeration value 'E' not handled in switch}} expected-warning {{switch statement has empty body}} \
// expected-note{{put the semicolon on a separate line}}
if (int x=0) { // expected-note 2 {{previous definition is here}} if (int x=0) { // expected-note 2 {{previous definition is here}}
int x; // expected-error {{redefinition of 'x'}} int x; // expected-error {{redefinition of 'x'}}

View File

@ -70,7 +70,9 @@ namespace b6981007 {
for (auto x : s) { for (auto x : s) {
// We used to attempt to evaluate the initializer of this variable, // We used to attempt to evaluate the initializer of this variable,
// and crash because it has an undeduced type. // and crash because it has an undeduced type.
const int &n(x); // FIXME: We should set the loop variable to be invalid if we can't build
// the loop, to suppress this follow-on error.
const int &n(x); // expected-error {{could not bind to an lvalue of type 'auto'}}
} }
} }
} }

View File

@ -7,7 +7,7 @@ template <typename T>
void doIt() { void doIt() {
int a; // expected-warning {{unused variable 'a'}} int a; // expected-warning {{unused variable 'a'}}
for (auto& e : elements) for (auto& e : elements) // expected-warning {{unused variable 'e'}}
; ;
} }
@ -17,5 +17,5 @@ template <typename T>
int main(int, char**) { int main(int, char**) {
Vector<int> vector; Vector<int> vector;
vector.doIt(); vector.doIt(); // expected-note {{here}}
} }

View File

@ -264,7 +264,7 @@ namespace PR10053 {
} }
namespace PR10187 { namespace PR10187 {
namespace A { namespace A1 {
template<typename T> template<typename T>
struct S { struct S {
void f() { void f() {
@ -278,6 +278,25 @@ namespace PR10187 {
} }
} }
namespace A2 {
template<typename T>
struct S {
void f() {
for (auto &a : e)
__range(a); // expected-error {{undeclared identifier '__range'}}
}
T e[10];
};
void g() {
S<int>().f(); // expected-note {{here}}
}
struct X {};
void __range(X);
void h() {
S<X>().f();
}
}
namespace B { namespace B {
template<typename T> void g(); // expected-note {{not viable}} template<typename T> void g(); // expected-note {{not viable}}
template<typename T> void f() { template<typename T> void f() {