forked from OSchip/llvm-project
Revert "[MLIR][FlatAffineConstraints][NFC] Move some static functions to be available to Presburger/"
This reverts commit 6c0eaefaf8
.
This commit is contained in:
parent
6c0eaefaf8
commit
27a0718ad0
|
@ -419,16 +419,6 @@ protected:
|
|||
/// Normalized each constraints by the GCD of its coefficients.
|
||||
void normalizeConstraintsByGCD();
|
||||
|
||||
/// Searches for a constraint with a non-zero coefficient at `colIdx` in
|
||||
/// equality (isEq=true) or inequality (isEq=false) constraints.
|
||||
/// Returns true and sets row found in search in `rowIdx`, false otherwise.
|
||||
bool findConstraintWithNonZeroAt(unsigned colIdx, bool isEq,
|
||||
unsigned *rowIdx) const;
|
||||
|
||||
/// Returns true if the pos^th column is all zero for both inequalities and
|
||||
/// equalities.
|
||||
bool isColZero(unsigned pos) const;
|
||||
|
||||
/// A parameter that controls detection of an unrealistic number of
|
||||
/// constraints. If the number of constraints is this many times the number of
|
||||
/// variables, we consider such a system out of line with the intended use
|
||||
|
|
|
@ -1,40 +0,0 @@
|
|||
//===- Utils.h - General utilities for Presburger library ------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Utility functions required by the Presburger Library.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_ANALYSIS_PRESBURGER_UTILS_H
|
||||
#define MLIR_ANALYSIS_PRESBURGER_UTILS_H
|
||||
|
||||
#include "mlir/Support/LLVM.h"
|
||||
|
||||
namespace mlir {
|
||||
|
||||
class FlatAffineConstraints;
|
||||
|
||||
namespace presburger_utils {
|
||||
|
||||
/// Check if the pos^th identifier can be expressed as a floordiv of an affine
|
||||
/// function of other identifiers (where the divisor is a positive constant).
|
||||
/// `foundRepr` contains a boolean for each identifier indicating if the
|
||||
/// explicit representation for that identifier has already been computed.
|
||||
/// Returns the upper and lower bound inequalities using which the floordiv
|
||||
/// can be computed. If the representation could be computed, `dividend` and
|
||||
/// `denominator` are set. If the representation could not be computed,
|
||||
/// `llvm::None` is returned.
|
||||
Optional<std::pair<unsigned, unsigned>>
|
||||
computeSingleVarRepr(const FlatAffineConstraints &cst, ArrayRef<bool> foundRepr,
|
||||
unsigned pos, SmallVector<int64_t, 8> ÷nd,
|
||||
unsigned &divisor);
|
||||
|
||||
} // namespace presburger_utils
|
||||
} // namespace mlir
|
||||
|
||||
#endif // MLIR_ANALYSIS_PRESBURGER_UTILS_H
|
|
@ -13,7 +13,6 @@
|
|||
#include "mlir/Analysis/AffineStructures.h"
|
||||
#include "mlir/Analysis/LinearTransform.h"
|
||||
#include "mlir/Analysis/Presburger/Simplex.h"
|
||||
#include "mlir/Analysis/Presburger/Utils.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
||||
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
|
||||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
||||
|
@ -701,13 +700,14 @@ void FlatAffineValueConstraints::addAffineIfOpDomain(AffineIfOp ifOp) {
|
|||
// Searches for a constraint with a non-zero coefficient at `colIdx` in
|
||||
// equality (isEq=true) or inequality (isEq=false) constraints.
|
||||
// Returns true and sets row found in search in `rowIdx`, false otherwise.
|
||||
bool FlatAffineConstraints::findConstraintWithNonZeroAt(
|
||||
unsigned colIdx, bool isEq, unsigned *rowIdx) const {
|
||||
assert(colIdx < getNumCols() && "position out of bounds");
|
||||
static bool findConstraintWithNonZeroAt(const FlatAffineConstraints &cst,
|
||||
unsigned colIdx, bool isEq,
|
||||
unsigned *rowIdx) {
|
||||
assert(colIdx < cst.getNumCols() && "position out of bounds");
|
||||
auto at = [&](unsigned rowIdx) -> int64_t {
|
||||
return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
|
||||
return isEq ? cst.atEq(rowIdx, colIdx) : cst.atIneq(rowIdx, colIdx);
|
||||
};
|
||||
unsigned e = isEq ? getNumEqualities() : getNumInequalities();
|
||||
unsigned e = isEq ? cst.getNumEqualities() : cst.getNumInequalities();
|
||||
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
|
||||
if (at(*rowIdx) != 0) {
|
||||
return true;
|
||||
|
@ -1203,6 +1203,145 @@ bool FlatAffineConstraints::containsPoint(ArrayRef<int64_t> point) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
/// Check if the pos^th identifier can be represented as a division using upper
|
||||
/// bound inequality at position `ubIneq` and lower bound inequality at position
|
||||
/// `lbIneq`.
|
||||
///
|
||||
/// Let `id` be the pos^th identifier, then `id` is equivalent to
|
||||
/// `expr floordiv divisor` if there are constraints of the form:
|
||||
/// 0 <= expr - divisor * id <= divisor - 1
|
||||
/// Rearranging, we have:
|
||||
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
|
||||
/// -divisor * id + expr >= 0 <-- Upper bound for 'id'
|
||||
///
|
||||
/// For example:
|
||||
/// 32*k >= 16*i + j - 31 <-- Lower bound for 'k'
|
||||
/// 32*k <= 16*i + j <-- Upper bound for 'k'
|
||||
/// expr = 16*i + j, divisor = 32
|
||||
/// k = ( 16*i + j ) floordiv 32
|
||||
///
|
||||
/// 4q >= i + j - 2 <-- Lower bound for 'q'
|
||||
/// 4q <= i + j + 1 <-- Upper bound for 'q'
|
||||
/// expr = i + j + 1, divisor = 4
|
||||
/// q = (i + j + 1) floordiv 4
|
||||
//
|
||||
/// This function also supports detecting divisions from bounds that are
|
||||
/// strictly tighter than the division bounds described above, since tighter
|
||||
/// bounds imply the division bounds. For example:
|
||||
/// 4q - i - j + 2 >= 0 <-- Lower bound for 'q'
|
||||
/// -4q + i + j >= 0 <-- Tight upper bound for 'q'
|
||||
///
|
||||
/// To extract floor divisions with tighter bounds, we assume that that the
|
||||
/// constraints are of the form:
|
||||
/// c <= expr - divisior * id <= divisor - 1, where 0 <= c <= divisor - 1
|
||||
/// Rearranging, we have:
|
||||
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
|
||||
/// -divisor * id + expr - c >= 0 <-- Upper bound for 'id'
|
||||
///
|
||||
/// If successful, `expr` is set to dividend of the division and `divisor` is
|
||||
/// set to the denominator of the division.
|
||||
static LogicalResult getDivRepr(const FlatAffineConstraints &cst, unsigned pos,
|
||||
unsigned ubIneq, unsigned lbIneq,
|
||||
SmallVector<int64_t, 8> &expr,
|
||||
unsigned &divisor) {
|
||||
|
||||
assert(pos <= cst.getNumIds() && "Invalid identifier position");
|
||||
assert(ubIneq <= cst.getNumInequalities() &&
|
||||
"Invalid upper bound inequality position");
|
||||
assert(lbIneq <= cst.getNumInequalities() &&
|
||||
"Invalid upper bound inequality position");
|
||||
|
||||
// Extract divisor from the lower bound.
|
||||
divisor = cst.atIneq(lbIneq, pos);
|
||||
|
||||
// First, check if the constraints are opposite of each other except the
|
||||
// constant term.
|
||||
unsigned i = 0, e = 0;
|
||||
for (i = 0, e = cst.getNumIds(); i < e; ++i)
|
||||
if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i))
|
||||
break;
|
||||
|
||||
if (i < e)
|
||||
return failure();
|
||||
|
||||
// Then, check if the constant term is of the proper form.
|
||||
// Due to the form of the upper/lower bound inequalities, the sum of their
|
||||
// constants is `divisor - 1 - c`. From this, we can extract c:
|
||||
int64_t constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) +
|
||||
cst.atIneq(ubIneq, cst.getNumCols() - 1);
|
||||
int64_t c = divisor - 1 - constantSum;
|
||||
|
||||
// Check if `c` satisfies the condition `0 <= c <= divisor - 1`. This also
|
||||
// implictly checks that `divisor` is positive.
|
||||
if (!(c >= 0 && c <= divisor - 1))
|
||||
return failure();
|
||||
|
||||
// The inequality pair can be used to extract the division.
|
||||
// Set `expr` to the dividend of the division except the constant term, which
|
||||
// is set below.
|
||||
expr.resize(cst.getNumCols(), 0);
|
||||
for (i = 0, e = cst.getNumIds(); i < e; ++i)
|
||||
if (i != pos)
|
||||
expr[i] = cst.atIneq(ubIneq, i);
|
||||
|
||||
// From the upper bound inequality's form, its constant term is equal to the
|
||||
// constant term of `expr`, minus `c`. From this,
|
||||
// constant term of `expr` = constant term of upper bound + `c`.
|
||||
expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c;
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Check if the pos^th identifier can be expressed as a floordiv of an affine
|
||||
/// function of other identifiers (where the divisor is a positive constant).
|
||||
/// `foundRepr` contains a boolean for each identifier indicating if the
|
||||
/// explicit representation for that identifier has already been computed.
|
||||
/// Returns the upper and lower bound inequalities using which the floordiv can
|
||||
/// be computed. If the representation could be computed, `dividend` and
|
||||
/// `denominator` are set. If the representation could not be computed,
|
||||
/// `llvm::None` is returned.
|
||||
static Optional<std::pair<unsigned, unsigned>>
|
||||
computeSingleVarRepr(const FlatAffineConstraints &cst,
|
||||
const SmallVector<bool, 8> &foundRepr, unsigned pos,
|
||||
SmallVector<int64_t, 8> ÷nd, unsigned &divisor) {
|
||||
assert(pos < cst.getNumIds() && "invalid position");
|
||||
assert(foundRepr.size() == cst.getNumIds() &&
|
||||
"Size of foundRepr does not match total number of variables");
|
||||
|
||||
SmallVector<unsigned, 4> lbIndices, ubIndices;
|
||||
cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices);
|
||||
|
||||
for (unsigned ubPos : ubIndices) {
|
||||
for (unsigned lbPos : lbIndices) {
|
||||
// Attempt to get divison representation from ubPos, lbPos.
|
||||
if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor)))
|
||||
continue;
|
||||
|
||||
// Check if the inequalities depend on a variable for which
|
||||
// an explicit representation has not been found yet.
|
||||
// Exit to avoid circular dependencies between divisions.
|
||||
unsigned c, f;
|
||||
for (c = 0, f = cst.getNumIds(); c < f; ++c) {
|
||||
if (c == pos)
|
||||
continue;
|
||||
if (!foundRepr[c] && dividend[c] != 0)
|
||||
break;
|
||||
}
|
||||
|
||||
// Expression can't be constructed as it depends on a yet unknown
|
||||
// identifier.
|
||||
// TODO: Visit/compute the identifiers in an order so that this doesn't
|
||||
// happen. More complex but much more efficient.
|
||||
if (c < f)
|
||||
continue;
|
||||
|
||||
return std::make_pair(ubPos, lbPos);
|
||||
}
|
||||
}
|
||||
|
||||
return llvm::None;
|
||||
}
|
||||
|
||||
void FlatAffineConstraints::getLocalReprs(
|
||||
std::vector<llvm::Optional<std::pair<unsigned, unsigned>>> &repr) const {
|
||||
std::vector<SmallVector<int64_t, 8>> dividends(getNumLocalIds());
|
||||
|
@ -1239,9 +1378,8 @@ void FlatAffineConstraints::getLocalReprs(
|
|||
changed = false;
|
||||
for (unsigned i = 0, e = getNumLocalIds(); i < e; ++i) {
|
||||
if (!foundRepr[i + divOffset]) {
|
||||
if (auto res = presburger_utils::computeSingleVarRepr(
|
||||
*this, foundRepr, divOffset + i, dividends[i],
|
||||
denominators[i])) {
|
||||
if (auto res = computeSingleVarRepr(*this, foundRepr, divOffset + i,
|
||||
dividends[i], denominators[i])) {
|
||||
foundRepr[i + divOffset] = true;
|
||||
repr[i] = res;
|
||||
changed = true;
|
||||
|
@ -1299,9 +1437,11 @@ unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
|
|||
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
|
||||
// Find a row which has a non-zero coefficient in column 'j'.
|
||||
unsigned pivotRow;
|
||||
if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true, &pivotRow)) {
|
||||
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
|
||||
&pivotRow)) {
|
||||
// No pivot row in equalities with non-zero at 'pivotCol'.
|
||||
if (!findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false, &pivotRow)) {
|
||||
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
|
||||
&pivotRow)) {
|
||||
// If inequalities are also non-zero in 'pivotCol', it can be
|
||||
// eliminated.
|
||||
continue;
|
||||
|
@ -1530,8 +1670,7 @@ static bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
|
|||
|
||||
SmallVector<int64_t, 8> dividend;
|
||||
unsigned divisor;
|
||||
auto ulPair = presburger_utils::computeSingleVarRepr(cst, foundRepr, pos,
|
||||
dividend, divisor);
|
||||
auto ulPair = computeSingleVarRepr(cst, foundRepr, pos, dividend, divisor);
|
||||
|
||||
// No upper-lower bound pair found for this var.
|
||||
if (!ulPair)
|
||||
|
@ -1970,7 +2109,7 @@ void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num,
|
|||
|
||||
// Detect an identifier as an expression of other identifiers.
|
||||
unsigned idx;
|
||||
if (!findConstraintWithNonZeroAt(pos, /*isEq=*/true, &idx)) {
|
||||
if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -3308,10 +3447,12 @@ void FlatAffineValueConstraints::getIneqAsAffineValueMap(
|
|||
vmap.reset(AffineMap::get(numDims - 1, numSyms, boundExpr), operands);
|
||||
}
|
||||
|
||||
bool FlatAffineConstraints::isColZero(unsigned pos) const {
|
||||
/// Returns true if the pos^th column is all zero for both inequalities and
|
||||
/// equalities..
|
||||
static bool isColZero(const FlatAffineConstraints &cst, unsigned pos) {
|
||||
unsigned rowPos;
|
||||
return !findConstraintWithNonZeroAt(pos, /*isEq=*/false, &rowPos) &&
|
||||
!findConstraintWithNonZeroAt(pos, /*isEq=*/true, &rowPos);
|
||||
return !findConstraintWithNonZeroAt(cst, pos, /*isEq=*/false, &rowPos) &&
|
||||
!findConstraintWithNonZeroAt(cst, pos, /*isEq=*/true, &rowPos);
|
||||
}
|
||||
|
||||
IntegerSet FlatAffineConstraints::getAsIntegerSet(MLIRContext *context) const {
|
||||
|
@ -3330,7 +3471,7 @@ IntegerSet FlatAffineConstraints::getAsIntegerSet(MLIRContext *context) const {
|
|||
SmallVector<unsigned> noLocalRepVars;
|
||||
unsigned numDimsSymbols = getNumDimAndSymbolIds();
|
||||
for (unsigned i = numDimsSymbols, e = getNumIds(); i < e; ++i) {
|
||||
if (!memo[i] && !isColZero(/*pos=*/i))
|
||||
if (!memo[i] && !isColZero(*this, /*pos=*/i))
|
||||
noLocalRepVars.push_back(i - numDimsSymbols);
|
||||
}
|
||||
if (!noLocalRepVars.empty()) {
|
||||
|
|
|
@ -2,7 +2,6 @@ add_mlir_library(MLIRPresburger
|
|||
IntegerPolyhedron.cpp
|
||||
Matrix.cpp
|
||||
Simplex.cpp
|
||||
Utils.cpp
|
||||
|
||||
DEPENDS
|
||||
MLIRBuiltinLocationAttributesIncGen
|
||||
|
|
|
@ -1,154 +0,0 @@
|
|||
//===- Utils.cpp - General utilities for Presburger library ---------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Utility functions required by the Presburger Library.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Analysis/Presburger/Utils.h"
|
||||
#include "mlir/Analysis/AffineStructures.h"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
/// Check if the pos^th identifier can be represented as a division using upper
|
||||
/// bound inequality at position `ubIneq` and lower bound inequality at position
|
||||
/// `lbIneq`.
|
||||
///
|
||||
/// Let `id` be the pos^th identifier, then `id` is equivalent to
|
||||
/// `expr floordiv divisor` if there are constraints of the form:
|
||||
/// 0 <= expr - divisor * id <= divisor - 1
|
||||
/// Rearranging, we have:
|
||||
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
|
||||
/// -divisor * id + expr >= 0 <-- Upper bound for 'id'
|
||||
///
|
||||
/// For example:
|
||||
/// 32*k >= 16*i + j - 31 <-- Lower bound for 'k'
|
||||
/// 32*k <= 16*i + j <-- Upper bound for 'k'
|
||||
/// expr = 16*i + j, divisor = 32
|
||||
/// k = ( 16*i + j ) floordiv 32
|
||||
///
|
||||
/// 4q >= i + j - 2 <-- Lower bound for 'q'
|
||||
/// 4q <= i + j + 1 <-- Upper bound for 'q'
|
||||
/// expr = i + j + 1, divisor = 4
|
||||
/// q = (i + j + 1) floordiv 4
|
||||
//
|
||||
/// This function also supports detecting divisions from bounds that are
|
||||
/// strictly tighter than the division bounds described above, since tighter
|
||||
/// bounds imply the division bounds. For example:
|
||||
/// 4q - i - j + 2 >= 0 <-- Lower bound for 'q'
|
||||
/// -4q + i + j >= 0 <-- Tight upper bound for 'q'
|
||||
///
|
||||
/// To extract floor divisions with tighter bounds, we assume that that the
|
||||
/// constraints are of the form:
|
||||
/// c <= expr - divisior * id <= divisor - 1, where 0 <= c <= divisor - 1
|
||||
/// Rearranging, we have:
|
||||
/// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id'
|
||||
/// -divisor * id + expr - c >= 0 <-- Upper bound for 'id'
|
||||
///
|
||||
/// If successful, `expr` is set to dividend of the division and `divisor` is
|
||||
/// set to the denominator of the division.
|
||||
static LogicalResult getDivRepr(const FlatAffineConstraints &cst, unsigned pos,
|
||||
unsigned ubIneq, unsigned lbIneq,
|
||||
SmallVector<int64_t, 8> &expr,
|
||||
unsigned &divisor) {
|
||||
|
||||
assert(pos <= cst.getNumIds() && "Invalid identifier position");
|
||||
assert(ubIneq <= cst.getNumInequalities() &&
|
||||
"Invalid upper bound inequality position");
|
||||
assert(lbIneq <= cst.getNumInequalities() &&
|
||||
"Invalid upper bound inequality position");
|
||||
|
||||
// Extract divisor from the lower bound.
|
||||
divisor = cst.atIneq(lbIneq, pos);
|
||||
|
||||
// First, check if the constraints are opposite of each other except the
|
||||
// constant term.
|
||||
unsigned i = 0, e = 0;
|
||||
for (i = 0, e = cst.getNumIds(); i < e; ++i)
|
||||
if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i))
|
||||
break;
|
||||
|
||||
if (i < e)
|
||||
return failure();
|
||||
|
||||
// Then, check if the constant term is of the proper form.
|
||||
// Due to the form of the upper/lower bound inequalities, the sum of their
|
||||
// constants is `divisor - 1 - c`. From this, we can extract c:
|
||||
int64_t constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) +
|
||||
cst.atIneq(ubIneq, cst.getNumCols() - 1);
|
||||
int64_t c = divisor - 1 - constantSum;
|
||||
|
||||
// Check if `c` satisfies the condition `0 <= c <= divisor - 1`. This also
|
||||
// implictly checks that `divisor` is positive.
|
||||
if (!(c >= 0 && c <= divisor - 1))
|
||||
return failure();
|
||||
|
||||
// The inequality pair can be used to extract the division.
|
||||
// Set `expr` to the dividend of the division except the constant term, which
|
||||
// is set below.
|
||||
expr.resize(cst.getNumCols(), 0);
|
||||
for (i = 0, e = cst.getNumIds(); i < e; ++i)
|
||||
if (i != pos)
|
||||
expr[i] = cst.atIneq(ubIneq, i);
|
||||
|
||||
// From the upper bound inequality's form, its constant term is equal to the
|
||||
// constant term of `expr`, minus `c`. From this,
|
||||
// constant term of `expr` = constant term of upper bound + `c`.
|
||||
expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c;
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
/// Check if the pos^th identifier can be expressed as a floordiv of an affine
|
||||
/// function of other identifiers (where the divisor is a positive constant).
|
||||
/// `foundRepr` contains a boolean for each identifier indicating if the
|
||||
/// explicit representation for that identifier has already been computed.
|
||||
/// Returns the upper and lower bound inequalities using which the floordiv can
|
||||
/// be computed. If the representation could be computed, `dividend` and
|
||||
/// `denominator` are set. If the representation could not be computed,
|
||||
/// `llvm::None` is returned.
|
||||
Optional<std::pair<unsigned, unsigned>> presburger_utils::computeSingleVarRepr(
|
||||
const FlatAffineConstraints &cst, ArrayRef<bool> foundRepr, unsigned pos,
|
||||
SmallVector<int64_t, 8> ÷nd, unsigned &divisor) {
|
||||
assert(pos < cst.getNumIds() && "invalid position");
|
||||
assert(foundRepr.size() == cst.getNumIds() &&
|
||||
"Size of foundRepr does not match total number of variables");
|
||||
|
||||
SmallVector<unsigned, 4> lbIndices, ubIndices;
|
||||
cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices);
|
||||
|
||||
for (unsigned ubPos : ubIndices) {
|
||||
for (unsigned lbPos : lbIndices) {
|
||||
// Attempt to get divison representation from ubPos, lbPos.
|
||||
if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor)))
|
||||
continue;
|
||||
|
||||
// Check if the inequalities depend on a variable for which
|
||||
// an explicit representation has not been found yet.
|
||||
// Exit to avoid circular dependencies between divisions.
|
||||
unsigned c, f;
|
||||
for (c = 0, f = cst.getNumIds(); c < f; ++c) {
|
||||
if (c == pos)
|
||||
continue;
|
||||
if (!foundRepr[c] && dividend[c] != 0)
|
||||
break;
|
||||
}
|
||||
|
||||
// Expression can't be constructed as it depends on a yet unknown
|
||||
// identifier.
|
||||
// TODO: Visit/compute the identifiers in an order so that this doesn't
|
||||
// happen. More complex but much more efficient.
|
||||
if (c < f)
|
||||
continue;
|
||||
|
||||
return std::make_pair(ubPos, lbPos);
|
||||
}
|
||||
}
|
||||
|
||||
return llvm::None;
|
||||
}
|
Loading…
Reference in New Issue