GlobalISel: omit braces on MachineInstr types when there's only one.

Tidies up the representation a bit in the common case.

llvm-svn: 276772
This commit is contained in:
Tim Northover 2016-07-26 17:28:01 +00:00
parent 3104a6bad0
commit 26e40bdb9b
7 changed files with 67 additions and 60 deletions

View File

@ -598,14 +598,20 @@ bool MIParser::parse(MachineInstr *&MI) {
SmallVector<LLT, 1> Tys;
if (isPreISelGenericOpcode(OpCode)) {
// For generic opcode, at least one type is mandatory.
expectAndConsume(MIToken::lbrace);
auto Loc = Token.location();
bool ManyTypes = Token.is(MIToken::lbrace);
if (ManyTypes)
lex();
// Now actually parse the type(s).
do {
auto Loc = Token.location();
Tys.resize(Tys.size() + 1);
if (parseLowLevelType(Loc, Tys[Tys.size() - 1]))
return true;
} while (consumeIfPresent(MIToken::comma));
expectAndConsume(MIToken::rbrace);
} while (ManyTypes && consumeIfPresent(MIToken::comma));
if (ManyTypes)
expectAndConsume(MIToken::rbrace);
}
// Parse the remaining machine operands.

View File

@ -566,13 +566,14 @@ void MIPrinter::print(const MachineInstr &MI) {
OS << TII->getName(MI.getOpcode());
if (isPreISelGenericOpcode(MI.getOpcode())) {
assert(MI.getType().isValid() && "Generic instructions must have a type");
OS << " { ";
for (unsigned i = 0; i < MI.getNumTypes(); ++i) {
unsigned NumTypes = MI.getNumTypes();
OS << (NumTypes > 1 ? " {" : "") << ' ';
for (unsigned i = 0; i < NumTypes; ++i) {
MI.getType(i).print(OS);
if (i + 1 != MI.getNumTypes())
if (i + 1 != NumTypes)
OS << ", ";
}
OS << " } ";
OS << (NumTypes > 1 ? " }" : "") << ' ';
}
if (I < E)
OS << ' ';

View File

@ -9,7 +9,7 @@ target triple = "aarch64-apple-ios"
; CHECK-LABEL: name: addi64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_ADD { s64 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_ADD s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @addi64(i64 %arg1, i64 %arg2) {
@ -23,9 +23,9 @@ define i64 @addi64(i64 %arg1, i64 %arg2) {
; CHECK-NEXT: - { id: 0, name: ptr1, offset: 0, size: 8, alignment: 8 }
; CHECK-NEXT: - { id: 1, name: ptr2, offset: 0, size: 8, alignment: 1 }
; CHECK-NEXT: - { id: 2, name: ptr3, offset: 0, size: 128, alignment: 8 }
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX { p0 } 0
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX { p0 } 1
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX { p0 } 2
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 0
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 1
; CHECK: %{{[0-9]+}}(64) = G_FRAME_INDEX p0 2
define void @allocai64() {
%ptr1 = alloca i64
%ptr2 = alloca i64, align 1
@ -44,7 +44,7 @@ define void @allocai64() {
; CHECK-NEXT: successors: %[[END:[0-9a-zA-Z._-]+]]({{0x[a-f0-9]+ / 0x[a-f0-9]+}} = 100.00%)
;
; Check that we emit the correct branch.
; CHECK: G_BR { unsized } %[[END]]
; CHECK: G_BR unsized %[[END]]
;
; Check that end contains the return instruction.
; CHECK: [[END]]:
@ -59,7 +59,7 @@ end:
; CHECK-LABEL: name: ori64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_OR { s64 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_OR s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @ori64(i64 %arg1, i64 %arg2) {
@ -70,7 +70,7 @@ define i64 @ori64(i64 %arg1, i64 %arg2) {
; CHECK-LABEL: name: ori32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_OR { s32 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_OR s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @ori32(i32 %arg1, i32 %arg2) {
@ -82,7 +82,7 @@ define i32 @ori32(i32 %arg1, i32 %arg2) {
; CHECK-LABEL: name: andi64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_AND { s64 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_AND s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @andi64(i64 %arg1, i64 %arg2) {
@ -93,7 +93,7 @@ define i64 @andi64(i64 %arg1, i64 %arg2) {
; CHECK-LABEL: name: andi32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_AND { s32 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_AND s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @andi32(i32 %arg1, i32 %arg2) {
@ -105,7 +105,7 @@ define i32 @andi32(i32 %arg1, i32 %arg2) {
; CHECK-LABEL: name: subi64
; CHECK: [[ARG1:%[0-9]+]](64) = COPY %x0
; CHECK-NEXT: [[ARG2:%[0-9]+]](64) = COPY %x1
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_SUB { s64 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](64) = G_SUB s64 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %x0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %x0
define i64 @subi64(i64 %arg1, i64 %arg2) {
@ -116,7 +116,7 @@ define i64 @subi64(i64 %arg1, i64 %arg2) {
; CHECK-LABEL: name: subi32
; CHECK: [[ARG1:%[0-9]+]](32) = COPY %w0
; CHECK-NEXT: [[ARG2:%[0-9]+]](32) = COPY %w1
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_SUB { s32 } [[ARG1]], [[ARG2]]
; CHECK-NEXT: [[RES:%[0-9]+]](32) = G_SUB s32 [[ARG1]], [[ARG2]]
; CHECK-NEXT: %w0 = COPY [[RES]]
; CHECK-NEXT: RET_ReallyLR implicit %w0
define i32 @subi32(i32 %arg1, i32 %arg2) {

View File

@ -68,8 +68,8 @@ registers:
body: |
bb.0.entry:
liveins: %x0
; CHECK: %0(32) = G_ADD { s32 } %w0
%0(32) = G_ADD { s32 } %w0, %w0
; CHECK: %0(32) = G_ADD s32 %w0
%0(32) = G_ADD s32 %w0, %w0
...
---
@ -85,8 +85,8 @@ registers:
body: |
bb.0.entry:
liveins: %d0
; CHECK: %0(64) = G_ADD { <2 x s32> } %d0
%0(64) = G_ADD { <2 x s32> } %d0, %d0
; CHECK: %0(64) = G_ADD <2 x s32> %d0
%0(64) = G_ADD <2 x s32> %d0, %d0
...
---
@ -107,9 +107,9 @@ body: |
liveins: %s0, %x0
; CHECK: %0(32) = COPY %s0
; CHECK-NEXT: %2(32) = COPY %0
; CHECK-NEXT: %1(32) = G_ADD { s32 } %2, %w0
; CHECK-NEXT: %1(32) = G_ADD s32 %2, %w0
%0(32) = COPY %s0
%1(32) = G_ADD { s32 } %0, %w0
%1(32) = G_ADD s32 %0, %w0
...
# Check that we repair the assignment for %0 differently for both uses.
@ -129,9 +129,9 @@ body: |
; CHECK: %0(32) = COPY %s0
; CHECK-NEXT: %2(32) = COPY %0
; CHECK-NEXT: %3(32) = COPY %0
; CHECK-NEXT: %1(32) = G_ADD { s32 } %2, %3
; CHECK-NEXT: %1(32) = G_ADD s32 %2, %3
%0(32) = COPY %s0
%1(32) = G_ADD { s32 } %0, %0
%1(32) = G_ADD s32 %0, %0
...
---
@ -152,10 +152,10 @@ body: |
bb.0.entry:
liveins: %w0
; CHECK: %0(32) = COPY %w0
; CHECK-NEXT: %2(32) = G_ADD { s32 } %0, %w0
; CHECK-NEXT: %2(32) = G_ADD s32 %0, %w0
; CHECK-NEXT: %1(32) = COPY %2
%0(32) = COPY %w0
%1(32) = G_ADD { s32 } %0, %w0
%1(32) = G_ADD s32 %0, %w0
...
---
@ -187,7 +187,7 @@ body: |
bb.1.then:
successors: %bb.2.end
%3(32) = G_ADD { s32 } %0, %0
%3(32) = G_ADD s32 %0, %0
bb.2.end:
%4(32) = PHI %0, %bb.0.entry, %3, %bb.1.then
@ -211,9 +211,9 @@ body: |
liveins: %w0, %s0
; CHECK: %0(32) = COPY %w0
; CHECK-NEXT: %2(32) = COPY %s0
; CHECK-NEXT: %1(32) = G_ADD { s32 } %0, %2
; CHECK-NEXT: %1(32) = G_ADD s32 %0, %2
%0(32) = COPY %w0
%1(32) = G_ADD { s32 } %0, %s0
%1(32) = G_ADD s32 %0, %s0
...
---
@ -229,10 +229,10 @@ body: |
bb.0.entry:
liveins: %w0
; CHECK: %0(32) = COPY %w0
; CHECK-NEXT: %1(32) = G_ADD { s32 } %0, %0
; CHECK-NEXT: %1(32) = G_ADD s32 %0, %0
; CHECK-NEXT: %s0 = COPY %1
%0(32) = COPY %w0
%s0 = G_ADD { s32 } %0, %0
%s0 = G_ADD s32 %0, %0
...
---
@ -271,13 +271,13 @@ body: |
; FAST-NEXT: %3(64) = COPY %0
; FAST-NEXT: %4(64) = COPY %1
; The mapping of G_OR is on FPR.
; FAST-NEXT: %2(64) = G_OR { <2 x s32> } %3, %4
; FAST-NEXT: %2(64) = G_OR <2 x s32> %3, %4
; Greedy mode remapped the instruction on the GPR bank.
; GREEDY-NEXT: %2(64) = G_OR { <2 x s32> } %0, %1
; GREEDY-NEXT: %2(64) = G_OR <2 x s32> %0, %1
%0(64) = COPY %x0
%1(64) = COPY %x1
%2(64) = G_OR { <2 x s32> } %0, %1
%2(64) = G_OR <2 x s32> %0, %1
...
---
@ -317,13 +317,13 @@ body: |
; FAST-NEXT: %3(64) = COPY %0
; FAST-NEXT: %4(64) = COPY %1
; The mapping of G_OR is on FPR.
; FAST-NEXT: %2(64) = G_OR { <2 x s32> } %3, %4
; FAST-NEXT: %2(64) = G_OR <2 x s32> %3, %4
; Greedy mode remapped the instruction on the GPR bank.
; GREEDY-NEXT: %3(64) = G_OR { <2 x s32> } %0, %1
; GREEDY-NEXT: %3(64) = G_OR <2 x s32> %0, %1
; We need to keep %2 into FPR because we do not know anything about it.
; GREEDY-NEXT: %2(64) = COPY %3
%0(64) = COPY %x0
%1(64) = COPY %x1
%2(64) = G_OR { <2 x s32> } %0, %1
%2(64) = G_OR <2 x s32> %0, %1
...

View File

@ -21,14 +21,14 @@ body: |
bb.0.entry:
liveins: %q0, %q1, %q2, %q3
; CHECK-LABEL: name: test_vector_add
; CHECK-DAG: [[LHS_LO:%.*]](128), [[LHS_HI:%.*]](128) = G_EXTRACT { <2 x s64> } %0, 0, 128
; CHECK-DAG: [[RHS_LO:%.*]](128), [[RHS_HI:%.*]](128) = G_EXTRACT { <2 x s64> } %1, 0, 128
; CHECK: [[RES_LO:%.*]](128) = G_ADD { <2 x s64> } [[LHS_LO]], [[RHS_LO]]
; CHECK: [[RES_HI:%.*]](128) = G_ADD { <2 x s64> } [[LHS_HI]], [[RHS_HI]]
; CHECK: %2(256) = G_SEQUENCE { <4 x s64> } [[RES_LO]], [[RES_HI]]
; CHECK-DAG: [[LHS_LO:%.*]](128), [[LHS_HI:%.*]](128) = G_EXTRACT <2 x s64> %0, 0, 128
; CHECK-DAG: [[RHS_LO:%.*]](128), [[RHS_HI:%.*]](128) = G_EXTRACT <2 x s64> %1, 0, 128
; CHECK: [[RES_LO:%.*]](128) = G_ADD <2 x s64> [[LHS_LO]], [[RHS_LO]]
; CHECK: [[RES_HI:%.*]](128) = G_ADD <2 x s64> [[LHS_HI]], [[RHS_HI]]
; CHECK: %2(256) = G_SEQUENCE <4 x s64> [[RES_LO]], [[RES_HI]]
%0(256) = G_SEQUENCE { <4 x s64> } %q0, %q1
%1(256) = G_SEQUENCE { <4 x s64> } %q2, %q3
%2(256) = G_ADD { <4 x s64> } %0, %1
%q0, %q1 = G_EXTRACT { <2 x s64> } %2, 0, 128
%0(256) = G_SEQUENCE <4 x s64> %q0, %q1
%1(256) = G_SEQUENCE <4 x s64> %q2, %q3
%2(256) = G_ADD <4 x s64> %0, %1
%q0, %q1 = G_EXTRACT <2 x s64> %2, 0, 128
...

View File

@ -5,7 +5,7 @@
; Tests for add.
; CHECK: name: addi32
; CHECK: G_ADD { s32 }
; CHECK: G_ADD s32
define i32 @addi32(i32 %arg1, i32 %arg2) {
%res = add i32 %arg1, %arg2
ret i32 %res

View File

@ -33,16 +33,16 @@ registers:
body: |
bb.0.entry:
liveins: %edi
; CHECK: %0(32) = G_ADD { s32 } %edi
%0(32) = G_ADD { s32 } %edi, %edi
; CHECK: %1(64) = G_ADD { <2 x s32> } %edi
%1(64) = G_ADD { <2 x s32> } %edi, %edi
; CHECK: %2(64) = G_ADD { s64 } %edi
%2(64) = G_ADD { s64 } %edi, %edi
; CHECK: %0(32) = G_ADD s32 %edi
%0(32) = G_ADD s32 %edi, %edi
; CHECK: %1(64) = G_ADD <2 x s32> %edi
%1(64) = G_ADD <2 x s32> %edi, %edi
; CHECK: %2(64) = G_ADD s64 %edi
%2(64) = G_ADD s64 %edi, %edi
; G_ADD is actually not a valid operand for structure type,
; but that is the only one we have for now for testing.
; CHECK: %3(64) = G_ADD { s64 } %edi
%3(64) = G_ADD { s64 } %edi, %edi
; CHECK: %4(48) = G_ADD { s48 } %edi
%4(48) = G_ADD { s48 } %edi, %edi
; CHECK: %3(64) = G_ADD s64 %edi
%3(64) = G_ADD s64 %edi, %edi
; CHECK: %4(48) = G_ADD s48 %edi
%4(48) = G_ADD s48 %edi, %edi
...