[LV] Pick vector loop body as insert point for SCEV expansion.

Currently the DomTree is not kept up to date for additional blocks
generated in the vector loop, for example when vectorizing with
predication. SCEVExpander relies on dominance checks when looking for
existing instructions to re-use and in some cases that can lead to the
expander picking instructions that do not actually dominate their insert
point (e.g. as in PR46525).

Unfortunately keeping the DT up-to-date is a bit tricky, because the CFG
is only patched up after generating code for a block. For now, we can
just use the vector loop header, as this ensures the inserted
instructions dominate all uses in the vector loop. There should be no
noticeable impact on the generated code, as other passes should sink
those instructions, if profitable.

Fixes PR46525.

Reviewers: Ayal, gilr, mkazantsev, dmgreen

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D83288
This commit is contained in:
Florian Hahn 2020-07-10 09:45:02 +01:00
parent cf40db21af
commit 264ab1e2c8
2 changed files with 129 additions and 3 deletions

View File

@ -2877,6 +2877,18 @@ Value *InnerLoopVectorizer::emitTransformedIndex(
return B.CreateMul(X, Y);
};
// Get a suitable insert point for SCEV expansion. For blocks in the vector
// loop, choose the end of the vector loop header (=LoopVectorBody), because
// the DomTree is not kept up-to-date for additional blocks generated in the
// vector loop. By using the header as insertion point, we guarantee that the
// expanded instructions dominate all their uses.
auto GetInsertPoint = [this, &B]() {
BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
if (InsertBB != LoopVectorBody &&
LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
return LoopVectorBody->getTerminator();
return &*B.GetInsertPoint();
};
switch (ID.getKind()) {
case InductionDescriptor::IK_IntInduction: {
assert(Index->getType() == StartValue->getType() &&
@ -2884,7 +2896,7 @@ Value *InnerLoopVectorizer::emitTransformedIndex(
if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
return B.CreateSub(StartValue, Index);
auto *Offset = CreateMul(
Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
return CreateAdd(StartValue, Offset);
}
case InductionDescriptor::IK_PtrInduction: {
@ -2892,8 +2904,8 @@ Value *InnerLoopVectorizer::emitTransformedIndex(
"Expected constant step for pointer induction");
return B.CreateGEP(
StartValue->getType()->getPointerElementType(), StartValue,
CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
&*B.GetInsertPoint())));
CreateMul(Index,
Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
}
case InductionDescriptor::IK_FpInduction: {
assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");

View File

@ -0,0 +1,114 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -loop-vectorize -force-vector-width=2 -S -prefer-predicate-over-epilog %s | FileCheck %s
; Test case for PR46525. There are two candidates to pick for
; `udiv i64 %y, %add` when expanding SCEV expressions. Make sure we pick %div,
; which dominates the vector loop.
define void @test(i16 %x, i64 %y, i32* %ptr) {
; CHECK-LABEL: @test(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CONV19:%.*]] = sext i16 [[X:%.*]] to i64
; CHECK-NEXT: [[ADD:%.*]] = add i64 [[CONV19]], 492802768830814067
; CHECK-NEXT: br label [[LOOP_PREHEADER:%.*]]
; CHECK: loop.preheader:
; CHECK-NEXT: [[DIV:%.*]] = udiv i64 [[Y:%.*]], [[ADD]]
; CHECK-NEXT: [[INC:%.*]] = add i64 [[DIV]], 1
; CHECK-NEXT: [[TMP0:%.*]] = add nuw nsw i64 [[DIV]], 4
; CHECK-NEXT: [[TMP1:%.*]] = udiv i64 [[TMP0]], [[INC]]
; CHECK-NEXT: [[TMP2:%.*]] = add nuw nsw i64 [[TMP1]], 1
; CHECK-NEXT: br i1 false, label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_RND_UP:%.*]] = add i64 [[TMP2]], 1
; CHECK-NEXT: [[N_MOD_VF:%.*]] = urem i64 [[N_RND_UP]], 2
; CHECK-NEXT: [[N_VEC:%.*]] = sub i64 [[N_RND_UP]], [[N_MOD_VF]]
; CHECK-NEXT: [[IND_END:%.*]] = mul i64 [[N_VEC]], [[INC]]
; CHECK-NEXT: [[TRIP_COUNT_MINUS_1:%.*]] = sub i64 [[TMP2]], 1
; CHECK-NEXT: [[BROADCAST_SPLATINSERT:%.*]] = insertelement <2 x i64> undef, i64 [[TRIP_COUNT_MINUS_1]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT:%.*]] = shufflevector <2 x i64> [[BROADCAST_SPLATINSERT]], <2 x i64> undef, <2 x i32> zeroinitializer
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[PRED_STORE_CONTINUE6:%.*]] ]
; CHECK-NEXT: [[OFFSET_IDX:%.*]] = mul i64 [[INDEX]], [[INC]]
; CHECK-NEXT: [[BROADCAST_SPLATINSERT1:%.*]] = insertelement <2 x i64> undef, i64 [[OFFSET_IDX]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT2:%.*]] = shufflevector <2 x i64> [[BROADCAST_SPLATINSERT1]], <2 x i64> undef, <2 x i32> zeroinitializer
; CHECK-NEXT: [[DOTSPLATINSERT:%.*]] = insertelement <2 x i64> undef, i64 [[INC]], i32 0
; CHECK-NEXT: [[DOTSPLAT:%.*]] = shufflevector <2 x i64> [[DOTSPLATINSERT]], <2 x i64> undef, <2 x i32> zeroinitializer
; CHECK-NEXT: [[TMP3:%.*]] = mul <2 x i64> <i64 0, i64 1>, [[DOTSPLAT]]
; CHECK-NEXT: [[INDUCTION:%.*]] = add <2 x i64> [[BROADCAST_SPLAT2]], [[TMP3]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i64 0, [[INC]]
; CHECK-NEXT: [[TMP5:%.*]] = add i64 [[OFFSET_IDX]], [[TMP4]]
; CHECK-NEXT: [[BROADCAST_SPLATINSERT3:%.*]] = insertelement <2 x i64> undef, i64 [[INDEX]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT4:%.*]] = shufflevector <2 x i64> [[BROADCAST_SPLATINSERT3]], <2 x i64> undef, <2 x i32> zeroinitializer
; CHECK-NEXT: [[VEC_IV:%.*]] = add <2 x i64> [[BROADCAST_SPLAT4]], <i64 0, i64 1>
; CHECK-NEXT: [[TMP6:%.*]] = icmp ule <2 x i64> [[VEC_IV]], [[BROADCAST_SPLAT]]
; CHECK-NEXT: [[TMP7:%.*]] = extractelement <2 x i1> [[TMP6]], i32 0
; CHECK-NEXT: br i1 [[TMP7]], label [[PRED_STORE_IF:%.*]], label [[PRED_STORE_CONTINUE:%.*]]
; CHECK: pred.store.if:
; CHECK-NEXT: store i32 0, i32* [[PTR:%.*]], align 4
; CHECK-NEXT: br label [[PRED_STORE_CONTINUE]]
; CHECK: pred.store.continue:
; CHECK-NEXT: [[TMP8:%.*]] = extractelement <2 x i1> [[TMP6]], i32 1
; CHECK-NEXT: br i1 [[TMP8]], label [[PRED_STORE_IF5:%.*]], label [[PRED_STORE_CONTINUE6]]
; CHECK: pred.store.if5:
; CHECK-NEXT: store i32 0, i32* [[PTR]], align 4
; CHECK-NEXT: br label [[PRED_STORE_CONTINUE6]]
; CHECK: pred.store.continue6:
; CHECK-NEXT: [[OFFSET_IDX7:%.*]] = mul i64 [[INDEX]], [[INC]]
; CHECK-NEXT: [[TMP9:%.*]] = trunc i64 [[OFFSET_IDX7]] to i8
; CHECK-NEXT: [[TMP10:%.*]] = trunc i64 [[INC]] to i8
; CHECK-NEXT: [[BROADCAST_SPLATINSERT8:%.*]] = insertelement <2 x i8> undef, i8 [[TMP9]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT9:%.*]] = shufflevector <2 x i8> [[BROADCAST_SPLATINSERT8]], <2 x i8> undef, <2 x i32> zeroinitializer
; CHECK-NEXT: [[DOTSPLATINSERT10:%.*]] = insertelement <2 x i8> undef, i8 [[TMP10]], i32 0
; CHECK-NEXT: [[DOTSPLAT11:%.*]] = shufflevector <2 x i8> [[DOTSPLATINSERT10]], <2 x i8> undef, <2 x i32> zeroinitializer
; CHECK-NEXT: [[TMP11:%.*]] = mul <2 x i8> <i8 0, i8 1>, [[DOTSPLAT11]]
; CHECK-NEXT: [[INDUCTION12:%.*]] = add <2 x i8> [[BROADCAST_SPLAT9]], [[TMP11]]
; CHECK-NEXT: [[TMP12:%.*]] = mul i8 0, [[TMP10]]
; CHECK-NEXT: [[TMP13:%.*]] = add i8 [[TMP9]], [[TMP12]]
; CHECK-NEXT: [[TMP14:%.*]] = add i8 [[TMP13]], 1
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP15:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP15]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop !0
;
entry:
%conv19 = sext i16 %x to i64
%add = add i64 %conv19, 492802768830814067
br label %loop.preheader
loop.preheader:
%div = udiv i64 %y, %add
%inc = add i64 %div, 1
br label %loop
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %loop.preheader ]
store i32 0, i32* %ptr, align 4
%v2 = trunc i64 %iv to i8
%v3 = add i8 %v2, 1
%cmp15 = icmp slt i8 %v3, 5
%iv.next = add i64 %iv, %inc
br i1 %cmp15, label %loop, label %loop.exit
loop.exit:
%div.1 = udiv i64 %y, %add
%v1 = add i64 %div.1, 1
br label %loop.2
loop.2:
%iv.1 = phi i64 [ %iv.next.1, %loop.2 ], [ 0, %loop.exit ]
%iv.next.1 = add i64 %iv.1, %v1
call void @use(i64 %iv.next.1)
%ec = icmp ult i64 %iv.next.1, 200
br i1 %ec, label %loop.2, label %loop.2.exit
loop.2.exit:
%c = call i1 @cond()
br i1 %c, label %loop.preheader, label %exit
exit:
ret void
}
declare void @use(i64)
declare i1 @cond()