forked from OSchip/llvm-project
GetLinearExpression is only called when TD is non-null, pass as
a reference instead of pointer. llvm-svn: 111445
This commit is contained in:
parent
1b9c38796e
commit
26403acef7
|
@ -219,7 +219,7 @@ namespace {
|
|||
/// have IntegerType. Note that this looks through extends, so the high bits
|
||||
/// may not be represented in the result.
|
||||
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
|
||||
const TargetData *TD, unsigned Depth) {
|
||||
const TargetData &TD, unsigned Depth) {
|
||||
assert(V->getType()->isIntegerTy() && "Not an integer value");
|
||||
|
||||
// Limit our recursion depth.
|
||||
|
@ -236,7 +236,7 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
|
|||
case Instruction::Or:
|
||||
// X|C == X+C if all the bits in C are unset in X. Otherwise we can't
|
||||
// analyze it.
|
||||
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
|
||||
if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
|
||||
break;
|
||||
// FALL THROUGH.
|
||||
case Instruction::Add:
|
||||
|
@ -328,7 +328,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
|
|||
// If we are lacking TargetData information, we can't compute the offets of
|
||||
// elements computed by GEPs. However, we can handle bitcast equivalent
|
||||
// GEPs.
|
||||
if (!TD) {
|
||||
if (TD == 0) {
|
||||
if (!GEPOp->hasAllZeroIndices())
|
||||
return V;
|
||||
V = GEPOp->getOperand(0);
|
||||
|
@ -363,7 +363,7 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
|
|||
// Use GetLinearExpression to decompose the index into a C1*V+C2 form.
|
||||
unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
|
||||
APInt IndexScale(Width, 0), IndexOffset(Width, 0);
|
||||
Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0);
|
||||
Index = GetLinearExpression(Index, IndexScale, IndexOffset, *TD, 0);
|
||||
|
||||
// The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
|
||||
// This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
|
||||
|
|
Loading…
Reference in New Issue